These results demonstrated that the proper concentration of MSO, NIS or OSB in spray mixtures improved the homogeneity of spray coverage on both waxy and hairy leaf surfaces and could reduce pesticide use. This article is a US Government work and is in the public domain in the USA.
With a number of new spray testing laboratories going into operation and each gearing up to measure spray atomization from agricultural spray nozzles using laser diffraction, establishing and following a set of scientific standard procedures is crucial to long-term data generation and standardization across the industry. It has long been recognized that while offering ease of use as compared to other methods, laser diffraction measurements do not account for measurement bias effects due to differential velocities between differing sized spray droplets, and in many cases significantly overestimate the fine droplet portion of the spray. Droplet sizes and velocities were measured for three agricultural flat fan nozzles (8002, 8008, and 6510) each at three spray pressures (138, 276, and 414 kPa) at four downstream distances (15.2, 30.5, 45.7, and 76.2 cm) across a range of concurrent air velocities (0.7-80.5 m/s). At air velocities below 6.7 m/s, large gradients in droplet velocities resulted in overestimation of both the 10% volume diameter (Dv0.1) by more than 10% and the percent volume of the spray less than 100 µm (V<100) was overestimated two-to threefold. The optimal measurement distance to reduce droplet measurement bias to less than 5% was found to be 30.5 cm with a concurrent air velocity of 6.7 m/s for measuring droplet size from ground nozzles. For aerial spray nozzles, the optimal distance was 45.7 cm. Use of these methods provides for more accurate droplet size data for use in efficacy testing and drift assessments, and significantly increases inter-lab reproducibility.
The use of an appropriate adjuvant for pesticide applications is a critical process to improve spray deposit characteristics on waxy leaves and to reduce off-target losses. After deposition and evaporation, residue patterns of 500 mm sessile droplets that incorporated four classes of adjuvants on five different waxy plants were investigated. Droplets were generated with a single-droplet generator and deposited on target leaves placed in an environmentally controlled chamber at 60% relative humidity and 25°C ambient temperature. Adjuvants tested were two oil-based types (crop oil concentrate, or COC; and modified seed oil, or MSO), a nonionic surfactant (NIS), and a mixture (oil surfactant blend, or OSB). Water-only droplets were also tested for comparative purposes. The five waxy plants were difficult to wet and had a water contact angle greater than 90°. The water-only droplets did not spread at all and formed extremely small wetted areas on the leaf surface. The addition of an adjuvant to the spray solution significantly reduced the contact angle and increased the wetted area, but the change or improvements varied with the plant species and adjuvant class. In general, MSO and NIS enhanced the droplet spread and maintained the droplet evaporation time on the waxy leaf surfaces. After evaporation, the residues formed patterns of "coffee rings". Droplets with oil-based adjuvants had more uniform residual distribution in the deposition patterns than droplets with the surfactant adjuvant. Results of this study demonstrated that selection of the appropriate class of adjuvants significantly improved deposit formation on waxy leaves, leading to more effectiveness of pesticides.
An increasing number of spray nozzle and agrochemical manufacturers are incorporating droplet size measurements into both research and development. Each laboratory invariably has their own sampling setup and procedures. This is particularly true about measurement distance from the nozzle and concurrent airflow velocities. Both have been shown to significantly impact results from laser diffraction instruments. These differences can be overcome through the use of standardized reference nozzles and relative spray classification categories. Sets of references nozzles, which defined a set of classification category thresholds, were evaluated for droplet size under three concurrent air flow velocities (0.7, 3.1 and 6.7 m/s). There were significant, though numerically small, differences in the droplet size data between identical reference nozzles. The resulting droplet size data were used to categorize a number of additional spray nozzles at multiple pressure and air flow velocities. This was done to determine if similar classifications were given across the different airspeeds. Generally, droplet size classifications agreed for all airspeeds, with the few that did not, only differing by one category. When reporting droplet size data, it is critical that data generated from a set of reference nozzles also be presented as a means of providing a relative frame of reference.
Spray droplet size has long been recognized as the most important variable that aerial applicators can influence to mitigate spray drift from the application site. There are several different technologies that are used by researchers to measure droplet size from spray nozzles. The objective of these studies was to determine the influence of eight spray adjuvants on the droplet size spectrum produced by two nozzles in a high-speed wind tunnel when characterized using three different droplet size measurement systems. The adjuvant, nozzles, and airspeeds used in these studies are commonly used by aerial applicators. Three droplet sizing systems (Malvern laser diffraction, PMS optical array probe, and LaVision laser imaging) were simultaneously operated to measure the spray droplet size spectra for each adjuvant, airspeed, and nozzle combination. Two spray nozzles (a D6-46 nozzle and a D2 straight stream nozzle) were evaluated in a high-speed wind tunnel at airspeeds of 45 and 58 m/sec. There were significant differences in the droplet size spectra produced by the eight spray adjuvants tested. There were also significant differences between the droplet size values reported by the three measurement systems (Malvern, LaVision, and PMS) evaluated; however, there was considerable agreement trendwise. In general, the Malvern reported smaller spray droplet size spectra values than the LaVision, while the PMS system generally reported the largest spray droplet size spectra values. These tests are the first reported studies where all three droplet sizing systems were operated simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.