The accurate and rapid detection of Campylobacter spp. is critical for optimal surveillance throughout poultry processing in the United States. The further development of highly specific and sensitive assays to detect Campylobacter in poultry matrices has tremendous utility and potential for aiding the reduction of foodborne illness. The introduction and development of molecular methods such as polymerase chain reaction (PCR) have enhanced the diagnostic capabilities of the food industry to identify the presence of foodborne pathogens throughout poultry production. Further innovations in various methodologies, such as immune-based typing and detection as well as high throughput analyses, will provide important epidemiological data such as the identification of unique or region-specific Campylobacter. Comparable to traditional microbiology and enrichment techniques, molecular techniques/methods have the potential to have improved sensitivity and specificity, as well as speed of data acquisition. This review will focus on the development and application of rapid molecular methods for identifying and quantifying Campylobacter in U.S. poultry and the emergence of novel methods that are faster and more precise than traditional microbiological techniques.
Poultry has been one of the major contributors of Campylobacter related human foodborne illness. Numerous interventions have been applied to limit Campylobacter colonization in poultry at the farm level, but other strategies are under investigation to achieve more efficient control. Probiotics are viable microbial cultures that can establish in the gastrointestinal tract (GIT) of the host animal and elicit health and nutrition benefits. In addition, the early establishment of probiotics in the GIT can serve as a barrier to foodborne pathogen colonization. Thus, probiotics are a potential feed additive for reducing and eliminating the colonization of Campylobacter in the GIT of poultry. Screening probiotic candidates is laborious and time-consuming, requiring several tests and validations both in vitro and in vivo. The selected probiotic candidate should possess the desired physiological characteristics and anti-Campylobacter effects. Probiotics that limit Campylobacter colonization in the GIT rely on different mechanistic strategies such as competitive exclusion, antagonism, and immunomodulation. Although numerous research efforts have been made, the application of Campylobacter limiting probiotics used in poultry remains somewhat elusive. This review summarizes current research progress on identifying and developing probiotics against Campylobacter and presenting possible directions for future research efforts.
Salmonella enterica and Campylobacter spp. cause a considerable number of human illnesses each year, and the vast majority of cases are foodborne. The purpose of this study was to establish the baseline of Salmonella and Campylobacter in beef products purchased from U.S. retail markets. Sampling was carried out in 38 American cities. Retail raw ground and whole-muscle beef (n = 2,885) samples were purchased and examined for the presence of Salmonella. Samples testing positive for Salmonella were identified with the commercial BAX System, which is a real-time PCR-based system. Of the original samples purchased, 1,185 were selected and tested for the presence of Campylobacter. Positive samples were isolated via direct plating and confirmed via agglutination and biochemical testing. Salmonella was detected in 0.66% of the total samples purchased. The prevalence of Salmonella in ground beef packages was 0.42% for modified atmosphere packaging, 0.63% for chub packaging, and 0.59% for overwrapped packages. Salmonella was detected in 1.02% of whole-muscle cuts. There was no relationship (P = 0.18) between product type (ground or whole muscle) and the percentage of positive samples. Campylobacter was recovered from 9.3% of samples. A greater percentage (17.24%, P < 0.01) of whole-muscle cuts tested positive for Campylobacter compared with ground beef samples (7.35%). Estimating pathogen baselines in U.S. retail beef is essential for allotting resources and directing interventions for pathogen control. These data can be utilized for a more complete understanding of these pathogens and their impact on public health from the consumption of beef products.
Poultry is a major reservoir for the pathogen Campylobacter jejuni. C. jejuni inhabits the poultry gastrointestinal tract as a part of the gut microbiota. The objective of this study was to evaluate both the survival of C. jejuni and the changes in the population dynamics of the cecal microbiome during an in vitro C. jejuni inoculation in the presence or absence of the functional metabolites of Diamond V Original XPC TM (XPC). Two independent trials were conducted. Broiler chickens (n = 6 per Trial 1 and n = 3 per Trial 2) were raised according to standard industry guidelines and euthanized on Day 41. The ceca were collected aseptically, their contents removed independently and then used in an in vitro microaerobic model with 0.1% cecal contents + Campylobacter with or without 1% XPC (w/v). Before the inoculation with a chloramphenicol resistant marker strain of C. jejuni, the cecal contents were pre-incubated with XPC at 42 • C for 24 h, in a shaking incubator (200 rpm) under microaerobic conditions, then experimentally inoculated with 10 8 /ml of C. jejuni into the appropriate treatment groups. At 0 and 24 h for Trial 1, and 48 h for Trial 2, sub-samples of the culture (n = 3 ceca, two technical replicates per ceca, XPC alone or ceca culture alone) were enumerated using a Petroff-Hausser counter, and the DNA was extracted for microbiome analysis. DNA was isolated using the Qiagen QIAamp Fast Stool DNA Mini Kit and sequenced using the Illumina MiSeq platform. The reads were filtered, normalized, and assigned taxonomical identities using the QIIME2 pipeline. The relative microbiota populations were identified via ANCOM. Altogether, evidence suggests that XPC alters the microbiome, and in turn reduces Campylobacter survival.
Salmonella Enteritidis is responsible for a significant proportion of foodborne Salmonellosis in the United States and continues to be attributable to table eggs, despite increased federal oversight in recent years. Technologies, including feed additives, continue to be evaluated for pre-harvest application of their potential food safety benefits. Here, Diamond V Original XPC™, a Saccharomyces cerevisiae fermentation based postbiotic (SCFP), was evaluated for its effectiveness in the reduction of Salmonella Enteritidis (SE) colonization in young layer pullets. A total of forty, day-old Hy-Line W-36 layer pullets were equally divided and randomly assigned to one of two dietary treatments with SCFP, or without (PCON) and orally gavaged on Day 28 with 10 6 CFU/mL of SE. Another twenty, day-old layer pullets were fed the same control feed without SCFP and blank inoculated on Day 28 with 1 ml of sterile PBS to serve as a negative control (NCON). Qualitative and quantitative analyses of cecal Salmonella contents were performed for all birds on Day 32. The prevalence of SE in the ceca of all directly challenged birds was 100%, however, the SE concentration in birds fed SCFP diet (3.35 Log 10 CFU/g) was significantly lower ( P <0.0001) than that of the PCON birds not fed SCFP (4.49 Log 10 CFU/g). Moreover, the proportion of SE colonized individuals with enumerable SE concentrations was lower in SCFP fed birds (57.9%) when compared to the PCON (95.0%). These data suggest that inclusion of SCFP in the diet may aid in the reduction of SE within the ceca of commercial laying hens and could serve as an additional, pre-harvest food safety hurdle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.