A series of substituted oxindole derivatives was synthesized and evaluated for growth hormone (GH) releasing activity using cultured rat pituitary cells. (+)-6-Carbamoyl-3-(2-chlorophenyl)-(2-diethylaminoethyl)-4-trifluoromethyloxindole (SM-130686, 37S) was found to have potent activity (EC(50) = 3.0 nM), while the other enantiomer 37R had reduced activity. The absolute configuration of 37S was confirmed by X-ray crystallographic analysis. Compound 37S showed a good pharmacokinetic profile in rats with 28% oral bioavailability at 10 mg/kg and excellent in vivo activity as evidenced by a significant weight gain after 4 days of oral administration at 10 mg/kg twice a day. Compound 37S displaced the binding of (35)S-MK-677 to human GHS-R with an IC(50) value of 1.2 +/- 0.2 nM.
benzamide (SMP-534) reduces extracellular matrix (ECM) production induced by transforming growth factor- (TGF-) in vitro and prevents the accumulation of ECM in glomeruli in rat Thy-1 nephritis models. In this study, we examined the longterm effects of SMP-534 on renal insufficiency and glomerulosclerosis in db/db mice, which are models of type 2 diabetes. A diet containing SMP-534 was given to the mice from the age of 9 to 25 wk, and blood and urine analysis were performed at 8, 17, and 25 wk. At the end of study, kidney tissues were analyzed histologically. Treatment with SMP-534 dose dependently suppressed the increase of urinary albumin and type IV collagen excretion in db/db mice. The renal histological analysis showed that SMP-534 dose dependently suppressed the increase of mesangial expansion in the kidney. In the immunohistological analysis, fibronectin and type IV collagen expression were lower in SMP-534-treated db/db mice compared with vehicle-treated db/db mice. This study suggested that SMP-534 ameliorated the increase of ECM production in kidney of db/db mice, possibly through the inhibition of TGF- action. Hence, antifibrotic agents such as SMP-534 might be a new therapeutic option for the treatment of diabetic nephropathy. urinary type IV collagen; diabetic nephropathy; antifibrotic agent; extracellular matrix; transforming growth factor-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.