Cemented paste backfill (CPB) is accepted as the optimal backfilling material for many underground mines. However, the lack of in-stope backfill pressure data poses fundamental problems from both operational and research standpoints. In response to the requirement for in situ data, a comprehensive field instrumentation project has been conducted. Results are presented here for two stopes at the Cayeli Mine, where geotechnical instruments were installed at the barricades and throughout the stopes. Measurements from a large (slow rise rate) stope with high binder content CPB demonstrated a rapid departure from hydrostatic loading, resulting in relatively low barricade pressures. Conversely, data from a smaller (fast rise rate) stope with lower binder content CPB demonstrated that when cement hydration is retarded, high barricade pressures occur. These examples illustrate the relationship between CPB rise rate and the moderating effect of cement hydration on in situ pressures, which ultimately control barricade pressures. Once CPB gains shear strength, arching of pressures occurs. In situ pressures were reduced with proximity to stope walls and further, under stope access brows, demonstrating that barricade location influences barricade loads. The application of real-time pressure monitoring of pastefill barricades has been demonstrated as an important tool in optimizing operational backfilling efficiency.
SUMMARYExplanation for the widely reported observation that fully grouted reinforcement is more effective in hard rock that behaves as a discontinuum than in soft rock is presented. Analytical solutions are presented for the distribution of displacement and load along an untensioned fully grouted elastic bolt, of specified bond stiffness, which is activated during excavation by either a continuous or discontinuous distribution of rock displacement. The results indicate that significantly higher axial loads are developed for the discontinuous case.Since the mechanics of bond failure depend on the type of bolt and grout used, in the second part of the paper a finite difference formulation is introduced and combined with a non-linear model for the bond behaviour of a cement grouted seven-wire strand cable bolt. The results of a parametric study indicate that, because the bond is frictional and depends on confinement at the borehole wall, for the same profile of rock mass displacement lower loads are developed in soft rock. Furthermore, in soft rock, excavation induced stress changes can cause a dramatic reduction in bond strength, so that, even after significant rock mass displacement, the axial load developed is significantly less than the tensile strength of the cable. A combination of these effects can explain why failures of cable bolted ground involve debonding at the cable-grout interface in soft rock, and why instances of cable rupture are confined to hard, blocky rock masses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.