The feeding value of four tropical grasses was assessed through voluntary intake and digestibility studies using yearling Brahman x British steers (average BW = 256 +/- 34 kg). The digestibility of OM was estimated using total fecal collection (TFC), in vitro OM digestibility (IVOMD), and by estimating fecal production using insoluble acid detergent fiber (IADF) as an indigestible marker. The four grasses consisted of bahiagrass (Paspalum notatum), limpograss (Hemarthria altissima), bermudagrass (Cynodon dactylon), and stargrass (Cynodon spp.). Grass was harvested at two stages of maturity (approximately 4 and 10 wk). Forages were ground (5 to 10 cm) and offered to steers ad libitum. Forage treatments were assigned randomly to steers over eight 28-d periods and repeated over two consecutive years. Total forage offered and refused was determined during a 14-d sample collection period. For determination of fecal output, steers were placed into metabolism crates for 7 d. Composited samples of forage offered, forage refused, and feces of each steer at each period were analyzed for DM, OM, NDF, ADF, IADF, IVOMD, and CP. All digestibility results were calculated on an OM basis. There were year x grass x maturity interactions (P < 0.01) for all measures of forage quality, except CP. Increased maturity resulted in a 37.8% decrease (P < 0.001) in CP concentration when averaged across all forages. Four-week bermudagrass contained the greatest (P < 0.05) concentration of CP compared with all other grasses at both maturities, except 4-wk stargrass. Bahiagrass IVOMD did not differ among 4- and 10-wk maturities in both years; however, the IVOMD content of both stargrass and bermudagrass decreased (P < 0.05) when these forages matured from 4 to 10 wk. Apparent OM digestibility, determined by TFC, was greater (P < 0.05) than OM digestibility determined by IVOMD and IADF for all forages except bahiagrass, for which IADF did not differ from TFC. In Year 1, OM intake (OMI) of 10-wk limpograss was less (P < 0.05) than all other 4-wk forages. In Year 2, voluntary OMI of 10-wk limpograss was less (P < 0.05) than all grass x maturity combinations, except for 10-wk bermudagrass. These data suggest that important differences exist in changes in nutrient quality associated with increased maturity in tropical forages. Among the forages assessed in this study, bahiagrass seems to better retain nutrient quality when maturing from 4 to 10 wk.
Brahman x British crossbred steers were used in growth and digestion trials to evaluate the response of source (corn, sugar cane molasses, or soybean hulls) and feeding rate (0, 1.4, or 2.8 kg DM per steer daily in the growth trials; 0, 15, or 30% of the ration DM in the digestion trial) of energy supplementation in cattle fed ammoniated (4% of forage DM) stargrass (Cynodon nlemfuensis Vanderyst var. nlemfuensis) hay. Cattle on all treatments were fed 0.5 kg cottonseed meal daily. In the growth trials, steers grazed dormant bahiagrass (Paspalum notatum) pasture. Increasing the levels of supplementation decreased hay intake but increased total dietary intake for all diets (P < 0.07). Daily gain and feed efficiency of steers were improved (P < 0.03) with supplementation. Steers supplemented with corn or soybean hulls at 2.8 kg DM/d had a higher ADG (0.92 kg) and gain/feed (0.103) than steers supplemented with molasses (0.78 kg, 0.08, respectively) at the same level. Seven crossbred steers (200 kg) were used in a five-period digestion trial to evaluate apparent OM, NDF, ADF, and hemicellulose digestibility. Apparent OM digestibility of all diets increased linearly (P = 0.02) as the level of supplementation increased. Apparent NDF and ADF digestibility decreased (P < 0.03) as the level of supplementation with corn or molasses increased, whereas increasing the level of soybean hulls in the diet increased (P < 0.06) apparent NDF and ADF digestibility. Four ruminally fistulated crossbred steers (472 kg) were used in a 4 x 4 latin square design to investigate ruminal characteristics with energy supplementation at 30% of ration DM. Ruminal pH in steers supplemented with soybean hulls or corn declined after feeding. Ruminal pH decreased more rapidly with corn supplementation and remained below 6.2 for a longer period of time than with the other diets. Ruminal pH did not change within 24 h after feeding for steers fed the control or molasses diets. No change in total VFA concentration was observed in steers fed molasses or corn. Total ruminal VFA concentration in steers supplemented with soybean hulls increased initially after feeding and then declined within 24 h after feeding. Soybean hulls produced fewer negative associative effects than corn when fed with ammoniated stargrass hay at 2.8 kg DM/d. The reduced gain/feed of steers supplemented with molasses compared to soybean hulls or corn indicates that molasses was not utilized as efficiently as the other energy sources.
Laboratory, digestion and growth studies were used to evaluate energy and protein supplements for ammoniated (4% of the forage DM) stargrass (Cynodon nlemfuensis Vanderyst var. nlemfuensis) hay. Ammoniation increased (P less than .05) total N concentration (.7 to .9% vs 1.7 to 2.0%) and in vitro digestion of OM, NDF and ADF and reduced (P less than .05) NDF concentration of stargrass hay. Two digestion (3 x 3 Latin square, 250-kg steers) and two growth (400-kg Brahman crossbred cull cows, eight head per pasture, two pastures per treatment, November through February) trials evaluated citrus pulp or liquid cane molasses (Trial 1) and molasses or molasses plus cottonseed meal (Trial 2) supplementation of ammoniated hay. Supplementation with byproduct energy sources, citrus pulp or molasses (either alone or with cottonseed meal), improved (P less than .05) OM digestibility but reduced (P less than .05) NDF and ADF digestibilities. Apparent nutrient digestibilities were similar (P greater than .05) between diets supplemented with citrus pulp and molasses and between diets supplemented with molasses and molasses plus cottonseed meal. In Trial 1, ADG by cull cows was greater (P less than .05) for citrus pulp- (.71 kg) or molasses-(.68 kg) supplemented diets than for hay fed alone (.49 kg). In Trial ADG was greater (P less than .05) for cull cows fed ammoniated hay supplemented with molasses plus cottonseed meal (.85 kg) than for those supplemented with molasses only (.69 kg). Feeding cows over the winter increased their (P less than .05) carcass weight, marbling score, USDA quality grade and lipid percentage of the 9-10-11 rib section compared with cows slaughtered at the beginning of the experiment.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.