The rate of accumulation of each ribosomal protein is carefully regulated by the yeast cell to provide the equimolar ratio necessary for the assembly of the ribosome. The mechanisms responsible for this regulation have been examined by introducing into the yeast cell extra copies of seven individual ribosomal protein genes carried on autonomously replicating plasmids. In each case studied the plasmid-borne gene was transcribed to the same degree as the genomic gene. Nevertheless, the cell maintained a balanced accumulation of ribosomal proteins, using a variety of methods other than transcription. (i) Several ribosomal proteins were synthesized in substantial excess. However, the excess ribosomal protein was rapidly degraded. (ii) The excess mRNA for two of the ribosomal protein genes was translated inefficiently. We provide evidence that this was due to inefficient initiation of translation. (iii) The transcripts derived from two of the ribosomal protein genes were spliced inefficiently, leading to an accumulation of precursor RNA. We present a model which proposes the autogenous regulation of mRNA splicing as a eucaryotic parallel of the autogenous regulation of mRNA translation in procaryotes. Finally, the accumulation of each ribosomal protein was regulated independently. In no instance did the presence of excess copies of the gene for one ribosomal protein affect the synthesis of another ribosomal protein.The ribosome is undoubtedly the most thoroughly understood organelle of the cell (2, 37, 38). It has two subunits. The smaller is composed of one RNA molecule and 20 to 30 proteins; the larger is composed of two RNA molecules and 35 to 50 proteins. With only one or two exceptions (e.g., L7/L12), there is a single molecule of each comnonent in each Escherichia coli ribosome (11) and there is no reason to believe that eucaryotic ribosomes will be different.Our interest is centered on the synthesis of the ribosome, in particular, on the mechanisms used by the cell to ensure an adequate supply of each component used for assembly without needless accumulation of excess components (7,36). In short, we view efficient synthesis of ribosomes as a problem of molecular inventory control. That the cell can carry out this process effectively was apparent from earlier studies on both RNA (33) and proteins (9) showing that no more than 10% excess of any ribosomal component was synthesized. Since the assembly of ribosomes is presumably limited by the availability of the least abundant component, there is little margin for error.
The DNA sequences of eight yeast ribosomal protein genes have been compared for the purpose of identifying homologous regions which may be involved in the coordinate regulation of ribosomal protein synthesis. A 12 bp homology was identified in the 5' DNA sequence preceding the structural gene for 6 out of 8 yeast ribosomal protein genes. In each case the homologous sequence was found at a position approximately 300 bp preceding the transcription start of the ribosomal protein gene. This homology was not identified in any non-ribosomal protein gene examined. Additional homologies between ribosomal protein genes were identified in the transcribed regions, including the untranslated 5' and 3' DNA regions flanking the coding regions.
The rate of accumulation of each ribosomal protein is carefully regulated by the yeast cell to provide the equimolar ratio necessary for the assembly of the ribosome. The mechanisms responsible for this regulation have been examined by introducing into the yeast cell extra copies of seven individual ribosomal protein genes carried on autonomously replicating plasmids. In each case studied the plasmid-borne gene was transcribed to the same degree as the genomic gene. Nevertheless, the cell maintained a balanced accumulation of ribosomal proteins, using a variety of methods other than transcription. (i) Several ribosomal proteins were synthesized in substantial excess. However, the excess ribosomal protein was rapidly degraded. (ii) The excess mRNA for two of the ribosomal protein genes was translated inefficiently. We provide evidence that this was due to inefficient initiation of translation. (iii) The transcripts derived from two of the ribosomal protein genes were spliced inefficiently, leading to an accumulation of precursor RNA. We present a model which proposes the autogenous regulation of mRNA splicing as a eucaryotic parallel of the autogenous regulation of mRNA translation in procaryotes. Finally, the accumulation of each ribosomal protein was regulated independently. In no instance did the presence of excess copies of the gene for one ribosomal protein affect the synthesis of another ribosomal protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.