Alveolar macrophages (AM) from pathogen-free rabbits were unable to release reactive oxygen intermediates (ROI) unless they were conditioned in serum for 24-48 h before triggering with membrane-active agents. The degree of serum conditioning of AM depended upon the concentration of serum used; optimal ROI release was obtained at or above 7.5% fetal bovine serum (FBS). FBS, autologous rabbit serum, pooled rabbit serum, and pooled human serum were each capable of conditioning AM for release of ROI. Serum conditioning of AM requires synthesis of new protein(s); and the enzyme required for ROI production, NADPH oxidase, was only detectable in serum-conditioned cells. Moreover, serum-conditioned cells lost their ability to release ROI after transfer to serum-free medium, while cells maintained in serum-free medium acquired the capacity to release ROI after their transfer to serum-containing medium, demonstrating the reversibility of the phenomenon. Initial purification data indicate that conditioning is mediated by a discrete serum constituent, which precipitates 40-80% saturated ammonium sulfate, does not bind to Cibacron Blue columns, and has a molecular weight of 30,000 to 50,000, as determined by molecular exclusion chromatography. Unlike gamma interferon, which also enhances ROI release by macrophages, our serum-conditioning factor is not acid labile, retaining 67% of its activity after 120 min incubation at pH 2.0. Moreover, it does not appear to be a contaminating endotoxin, since LPS neither conditioned AM for ROI production, nor triggered ROI production by serum-conditioned AM. We propose that such a conditioning requirement may normally protect the lung against ROI-mediated tissue injury. However, during a pulmonary inflammatory reaction initiated by other mediator systems, the resulting transudation of plasma proteins into the alveolar spaces may condition AM in situ for ROI production.
Soluble complexes containing the second and fourth compoezents of guinea pig complement, as well as hemolytic rabbit antibody, have been prepared by elution from sheep erythrocytes carrying these factors. These complexes render erythrocytes susceptible to lysis by the other factors of guinea pig complement, without the usual requirements for hemolytic antibody, Ca(++), and Mg(++).
The lung, by virtue of its anatomic situation, provides environmental antigens with unique access to host lymphoid tissues. In order to better understand the biologic consequences of antigen inhalation, we developed in animal model in which soluble proteins are administered in aerosol form to rabbits. By labeling these proteins with fluorochrome dyes or radioactive isotopes, the uptake, distribution, and fate of such proteins can be demonstrated both morphologically and quantitatively. Prompt host-antibody responses can be demonstrated to inhaled antigen, but not to comparable amounts of ingested antigen. Repeated administrations of antigen aerosol to immune animals produced little injury; in contrast, administration of aerosols containing phytohemagglutinin or cancanavalin A (Con A), plant lectins which activate leucocytes in a polyclonal fashion, induced a diffuse interstitial pneumonitis. When immune animals inhaled antigen plus Con A, devastating pulmonary necrosis was induced, in association with localized deposits of immune complexes containing antigen, antibody and complement. Such necrotic injury healed by scarring within 4 weeks. The necrotizing injury could be prevented by either decomplementation with cobra venom factor, or through inhibition of leucocyte responsiveness to Con A by administration of cholera toxin, a cAMP agonist. These studies indicate that antigen inhalation may serve as an important means of establishing "natural" immunity to environmental agents, but also may lead to severe pulmonary injury and fibrosis where the agents inhaled act not only as antigens but as polyclonal leucocyte activators as well.ImagesFIGURE 2. (a)FIGURE 2. (b)FIGURE 3. (a)FIGURE 3. (b)FIGURE 4. (a)FIGURE 4. (b)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.