SummaryLong distance transport of amino acids is mediated by several families of differentially expressed amino acid transporters. The two genes AAP1 and AAP2 encode broad specificity H ϩ -amino acid co-transporters and are expressed to high levels in siliques of Arabidopsis, indicating a potential role in supplying the seeds with organic nitrogen. The expression of both genes is developmentally controlled and is strongly induced in siliques at heart stage of embryogenesis, shortly before induction of storage protein genes. Histochemical analysis of transgenic plants expressing promoter-GUS fusions shows that the genes have nonoverlapping expression patterns in siliques. AAP1 is expressed in the endosperm and the cotyledons whereas AAP2 is expressed in the vascular strands of siliques and in funiculi. The endosperm expression of AAP1 during early stages of seed development indicates that the endosperm serves as a transient storage tissue for organic nitrogen. Amino acids are transported in both xylem and phloem but during seed filling are imported only via the phloem. AAP2, which is expressed in the phloem of stems and in the veins supplying seeds, may function in uptake of amino acids assimilated in the green silique tissue, in the retrieval of amino acids leaking passively out of the phloem and in xylem-to-phloem transfer along the path. The promoters provide excellent tools to study developmental, hormonal and metabolic control of nitrogen nutrition during development and may help to manipulate the timing and composition of amino acid import into seeds.
We have cloned four novel members of the CLC family of chloride channels from Arabidopsis thaliana. The four plant genes are homologous to a recently isolated chloride channel gene from tobacco (CLC-Nt1; Lurin, C., Geelen, D., Barbier-Brygoo, H., Guern, J., and Maurel, C.
Amino acids are regarded as the nitrogen 'currency' of plants. Amino acids can be taken up from the soil directly or synthesized from inorganic nitrogen, and then circulated in the plant via phloem and xylem. AtAAP3, a member of the Amino Acid Permease (AAP) family, is mainly expressed in root tissue, suggesting a potential role in the uptake and distribution of amino acids. To determine the spatial expression pattern of AAP3, promoter-reporter gene fusions were introduced into Arabidopsis. Histochemical analysis of AAP3 promoter-GUS expressing plants revealed that AAP3 is preferentially expressed in root phloem. Expression was also detected in stamens, in cotyledons, and in major veins of some mature leaves. GFP-AAP3 fusions and epitope-tagged AAP3 were used to confirm the tissue specificity and to determine the subcellular localization of AtAAP3. When overexpressed in yeast or plant protoplasts, the functional GFP-AAP3 fusion was localized in subcellular organelle-like structures, nuclear membrane, and plasma membrane. Epitope-tagged AAP3 confirmed its localization to the plasma membrane and nuclear membrane of the phloem, consistent with the promoter-GUS study. In addition, epitope-tagged AAP3 protein was localized in endodermal cells in root tips. The intracellular localization suggests trafficking or cycling of the transporter, similar to many metabolite transporters in yeast or mammals, for example, yeast amino acid permease GAP1. Despite the specific expression pattern, knock-out mutants did not show altered phenotypes under various conditions including N-starvation. Microarray analyses revealed that the expression profile of genes involved in amino acid metabolism did not change drastically, indicating potential compensation by other amino acid transporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.