Coal, fly ash, slag, and combustion gases from a large cyclone-fed power plant 870 MW(e) were analyzed for a suite of elements. Mass balance calculations show that the sampling and analyses were generally adequate to describe the flows of these elements through the plant. Most Hg, some Se, and probably most Cl and Br were discharged to the atmosphere as gases.
The effects of temperature, purity, magnetic state, and crystal structure on the thermal conductivity, electrical resistivity, and Seebeck coefficient of iron were obtained from measurements on Armco iron (99.5% pure, ρ300/ρ4.2=11.0) and a high-purity iron (99.95% pure, ρ300/ρ4.2=26.2). The most probable determinate errors of the measurements were thermal conductivity ±1.5%, electrical resistivity ±0.1%, and Seebeck coefficient ±0.9%; and larger absolute errors. Where theory permits, the thermophysical properties of iron are discussed in terms of contributing transport mechanisms. The thermal conductivity of iron can be calculated to ±1.5% between 0° and 910°C from electrical-resistivity measurements and the lattice portion of the thermal conductivity determined in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.