Superacids, defined as acids with a Hammett acidity function H0 ≤ -12, are useful materials, but a need exists for new, designable solid state systems. Here, we report superacidity in a sulfated metal-organic framework (MOF) obtained by treating the microcrystalline form of MOF-808 [MOF-808-P: Zr6O5(OH)3(BTC)2(HCOO)5(H2O)2, BTC = 1,3,5-benzenetricarboxylate] with aqueous sulfuric acid to generate its sulfated analogue, MOF-808-2.5SO4 [Zr6O5(OH)3(BTC)2(SO4)2.5(H2O)2.5]. This material has a Hammett acidity function H0 ≤ -14.5 and is thus identified as a superacid, providing the first evidence for superacidity in MOFs. The superacidity is attributed to the presence of zirconium-bound sulfate groups structurally characterized using single-crystal X-ray diffraction analysis.
Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso-and the macroscopic . -properjjes of.bulk materiaIs in the form of fibers, thin films and monoliths. These issues are ..J, addressed in~e context of five specific classes of porous materials: oxide molecular sieves, porous coordination soIids, porous carbons, soI-gel derived oxides, and porous heteropolyanion < salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines cunent research needs and opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.