The wake of polygonal cylinders with side number $N=2\sim \infty$ is systematically studied based on fluid force, hot-wire, particle image velocimetry and flow visualisation measurements. Each cylinder is examined for two orientations, with a flat surface or a corner leading and facing normally to the free stream. The Reynolds number $Re$ is $1.0\times 10^{4}\sim 1.0\times 10^{5}$, based on the longitudinally projected cylinder width. The time-averaged drag coefficient $C_{D}$ and fluctuating lift coefficient on these cylinders are documented, along with the characteristic properties including the Strouhal number $St$, flow separation point and angle $\unicode[STIX]{x1D703}_{s}$, wake width and critical Reynolds number $Re_{c}$ at which the transition from laminar to turbulent flow occurs. It is found that once $N$ exceeds 12, $Re_{c}$ depends on the difference between the inner diameter (tangent to the faces) and the outer diameter (connecting corners) of a polygon, the relationship being approximately given by the dependence of $Re_{c}$ on the height of the roughness elements for a circular cylinder. It is further found that $C_{D}$ versus $\unicode[STIX]{x1D709}$ or $St$ versus $\unicode[STIX]{x1D709}$ for all the tested cases collapse onto a single curve, where the angle $\unicode[STIX]{x1D709}$ is the corrected $\unicode[STIX]{x1D703}_{s}$ associated with the laterally widest point of the polygon and the separation point. Finally, the empirical correlation between $C_{D}$ and $St$ is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.