The transcript (mRNA), protein levels, enzyme activity, and cellular localization of four protein kinase C (PKC) isozymes identified in rat osteogenic sarcoma cells (UMR-108) were studied at confluent density and during mechanical stress (cyclic stretch). Western blot analysis indicated that growth to confluent density significantly increased the protein levels of cPKC-alpha (11.6-fold), nPKC-delta (5.3-fold), and nPKC-epsilon (22.0-fold) but not aPKC-zeta. Northern blot analysis indicated a significant (2.3-fold) increase in the 10 kb transcript of cPKC-alpha, a slight (1.3-fold) increase in that of nPKC-epsilon but no detectable change in that of the remaining isozymes. Enzyme activity assays of the individually immunoprecipitated isozymes yielded detectable kinase activity only for PKC-alpha, PKC-delta, and PKC-epsilon and only in confluent cells, corroborating the selective increase of these isozymes at confluent density. The UMR-108 cells showed a dramatic orientation response to mechanical stress with cell reshaping and alignment of the cell long axis perpendicular to the axis of force, remodeling of the actin cytoskeleton, and the appearance of multiple peripheral sites which stained for actin, vinculin, and PKC in separate experiments. Longer term mechanical stress beyond 24 h, however, resulted in no significant change in the mRNA level, protein level, or enzyme activity of any of the four PKC isozymes investigated. The results indicate that there are isozyme-selective increases in the protein levels of PKC isozymes of osteoblastic UMR-108 cells upon growth to confluence which may be regulated at the transcriptional or the post-transcriptional level. The results from UMR-108 cells support the earlier proposal (Carvalho RS, Scott JE, Suga DM, Yen EH. 1994. J Bone Miner Res 9(7):999-1011) that PKC could be involved in the early phase of mechanotransduction in osteoblasts through the activation of focal adhesion assembly/disassembly and the remodeling of the actin cytoskeleton.
The translocation of protein kinase C (PKC) isozymes from their inactive cell locus to a variety of cytoskeletal, organelle, and plasmalemmal sites is thought to play an important role in their activation and substrate specificity. We have utilized confocal microscopy to compare phorbol 12, 13 dibutyrate (PDB) - stimulated translocation of PKCalpha in cultured cells derived from rat vascular smooth muscle. In enzymatically dispersed, passaged smooth muscle cells, PKCalpha was uniformly distributed throughout the unstimulated cell. PDB stimulation resulted in extensive association of the PKCalpha into filamentous strands with subsequent accumulation of the isoform in the peri-nuclear region of the cell. Dual immunostaining indicated that PKCalpha was extensively colocalized with microtubules in the interval immediately following PDB stimulation but was largely disassociated from microtubules at 10 min, at which time the translocation of PKCalpha to the peri-nucleus/nucleus was nearly complete. It was further found that the use of colchicine to disrupt the microtubules caused the loss of PKCalpha translocation to the peri-nuclear region. By comparison, cytochalasin B disruption of actin microfilaments had no significant effect on this parameter. The data suggest that PDB stimulation results in a transient association of PKCalpha with cell microtubules and that the microtubules play an important role in the translocation of PKCalpha from the cytosol in passaged cells derived from rat aortic smooth muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.