Nowadays detection of deterioration of electrical motors is an important topic of research. Vibration signals often carry diagnostic information of a motor. The authors proposed a setup for the analysis of vibration signals of three-phase induction motors. In this paper rotor fault diagnostic techniques of a three-phase induction motor (TPIM) were presented. The presented techniques used vibration signals and signal processing methods. The authors analyzed the recognition rate of vibration signal readings for 3 states of the TPIM: healthy TPIM, TPIM with 1 broken bar, and TPIM with 2 broken bars. In this paper the authors described a method of the feature extraction of vibration signals Method of Selection of Amplitudes of Frequencies – MSAF-12. Feature vectors were obtained using FFT, MSAF-12, and mean of vector sum. Three methods of classification were used: Nearest Neighbor (NN), Linear Discriminant Analysis (LDA), and Linear Support Vector Machine (LSVM). The obtained results of analyzed classifiers were in the range of 97.61 % – 100 %.
Nowadays, condition-based maintenance (CBM) and fault diagnosis (FD) of rotating machinery (RM) has a vital role in the modern industrial world. However, the remaining useful life (RUL) of machinery is crucial for continuous monitoring and timely maintenance. Moreover, reduced maintenance costs, enhanced safety, efficiency, reliability, and availability are the main important industrial issues to maintain valuable and high-cost machinery. Undoubtedly, induction motor (IM) is considered to be a pivotal component in industrial machines. Recently, acoustic emission (AE) becomes a very accurate and efficient method for fault, leaks and fatigue detection and monitoring techniques. Moreover, CM and FD based on the AE of IM have been growing over recent years. The proposed research study aims to review condition monitoring (CM) and fault diagnosis (FD) studies based on sound and AE for four types of faults: bearings, rotor, stator, and compound. The study also points out the advantages and limitations of using sound and AE analysis in CM and FD. Existing public datasets for AE based analysis for CM and FD of IM are also mentioned. Finally, challenges facing AE based CM and FD for RM, especially for IM, and possible future works are addressed in this study.
This paper presents a study on vibration-based fault diagnosis techniques of a commutator motor (CM). Proposed techniques used vibration signals and signal processing methods. The authors analysed recognition efficiency for 3 states of the CM: healthy CM, CM with broken tooth on sprocket, CM with broken rotor coil. Feature extraction methods called MSAF-RATIO-50-SFC (method of selection of amplitudes of frequencies ratio 50 second frequency coefficient), MSAF-RATIO-50-SFC-EXPANDED were implemented and used for an analysis. Feature vectors were obtained using MSAF-RATIO-50-SFC, MSAF-RATIO-50-SFC-EXPANDED, and sum of RSoV. Classification methods such as nearest mean (NM) classifier, linear discriminant analysis (LDA), and backpropagation neural network (BNN) were used for the analysis. A total efficiency of recognition was in the range of 79.16%–93.75% (TV). The proposed methods have practical application in industries.
A degradation of metallurgical equipment is normal process depended on time. Some factors such as: operation process, friction, high temperature can accelerate the degradation process of metallurgical equipment. In this paper the authors analyzed three phase induction motors. These motors are common used in the metallurgy industry, for example in conveyor belt. The diagnostics of such motors is essential. An early detection of faults prevents financial loss and downtimes. The authors proposed a technique of fault diagnosis based on recognition of currents. The authors analyzed 4 states of three phase induction motor: healthy three phase induction motor, three phase induction motor with 1 faulty rotor bar, three phase induction motor with 2 faulty rotor bars, three phase induction motor with faulty ring of squirrel-cage. An analysis was carried out for original method of feature extraction called MSAF-RATIO15 (Method of Selection of Amplitudes of Frequencies -Ratio 15% of maximum of amplitude). A classification of feature vectors was performed by Bayes classifier, Linear Discriminant Analysis (LDA) and Nearest Neighbour classifier. The proposed technique of fault diagnosis can be used for protection of three phase induction motors and other rotating electrical machines. In the near future the authors will analyze other motors and faults. There is also idea to use thermal, acoustic, electrical, vibration signal together.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.