N-chlorotaurine, the N-chloro derivative of the amino acid taurine, is a long-lived oxidant produced by activated human granulocytes and monocytes. Supported by a high number of in vitro studies, it has mainly anti-inflammatory properties and seems to be involved in the termination of inflammation. The successful synthesis of the crystalline sodium salt (Cl-HN-CH(2)-CH(2)-SO(3)Na, NCT) facilitated its development as an endogenous antiseptic. NCT can be stored long-term at low temperatures, and it has killing activity against bacteria, fungi, viruses and parasites. Transfer of the active chlorine to amino groups of molecules of both the pathogens and the human body (transhalogenation) enhances rather than decreases its activity, mainly because of the formation of monochloramine. Furthermore, surface chlorination after sublethal incubation times in NCT leads to a post-antibiotic effect and loss of virulence of pathogens, as demonstrated for bacteria and yeasts. Being a mild oxidant, NCT proved to be very well tolerated by human tissue in Phase I and II clinical studies. A 1% aqueous solution can be applied to the eye, skin ulcerations, outer ear canal, nasal and paranasal sinuses, oral cavity and urinary bladder, and can probably be used for inhalation. Therapeutic efficacy in Phase II studies has been shown in external otitis, purulently coated crural ulcerations and keratoconjunctivitis, so far. Based upon all presently available data, NCT seems to be an antiseptic with a very good relation between tolerability and activity. Recently, C-methylated derivatives of NCT have been invented, which are of interest because of improved stability at room temperature.
N-Chlorotaurine, the main representative of long-lived oxidants found in the supernatant of stimulated granulocytes, has been investigated systematically with regard to its antibacterial activity at different physiological concentrations for the first time. N-Chlorotaurine (12.5 to 50 M) demonstrated a bactericidal effect i.e., a 2 to 4 log 10 reduction in viable counts, after incubation at 37°C for 6 to 9 h at pH 7.0, which effect was significantly enhanced in an acidic milieu (at pH 5.0), with a 3 to 4 log 10 reduction after 2 to 3 h. Moreover, bacteria were attenuated after being incubated in N-chlorotaurine for a sublethal time, as demonstrated with the mouse peritonitis model. The supernatant of stimulated granulocytes exhibited similar activity. Transmission electron microscopy revealed changes in the bacterial cell membrane and cytoplasmic disintegration with both reacting systems, even in the case of a mere attenuation. The results of this study suggest a significant bactericidal function of N-chlorotaurine and other chloramines during inflammation.
Antibiotic resistance is a growing public health crisis. To address the development of bacterial resistance, the use of antibiotics has to be minimized for nonsystemic applications in humans, as well as in animals and plants. Possible substitutes with low potential for developing resistance are active chlorine compounds that have been in clinical use for over 180 years. These agents are characterized by pronounced differences in their chlorinating and/or oxidizing activity, with hypochlorous acid (HOCl) as the strongest and organic chloramines as the weakest members. Bacterial killing in clinical practice is often associated with unwanted side effects such as chlorine consumption, tissue irritation, and pain, increasing proportionally with the chlorinating/oxidizing potency. Since the chloramines are able to effectively kill pathogens (bacteria, fungi, viruses, protozoa), their application as anti-infectives is advisable, all the more so as they exhibit additional beneficial properties such as destruction of toxins, degradation of biofilms, and anticoagulative and anti-inflammatory activities. Within the ample field of chloramines, the stable N-chloro derivatives of ß-aminosulfonic acids are most therapeutically advanced. Being available as sodium salts, they distinguish themselves by good solubility and absence of smell. Important representatives are N-chlorotaurine, a natural compound occurring in the human immune system, and novel mono-and dichloro derivatives of dimethyltaurine, which feature improved stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.