The DAVID gene functional classification tool uses a novel fuzzy clustering algorithm to condense a list of genes or associated biological terms into organized classes of related genes or biology, called biological modules.
To further understand the role of cytokine responses in symptom formation and host defenses in influenza infection, we determined the levels of IL-1beta, IL-2, IL-6, IL-8, IFN-alpha, TGF-beta, and TNF-alpha in nasal lavage fluid, plasma, and serum obtained serially from 19 volunteers experimentally infected with influenza A/Texas/36/91 (H1N1) and correlated these levels with various measures of infection and illness severity. We found that IL-6 and IFN-alpha levels in nasal lavage fluids peaked early (day 2) and correlated directly with viral titers, temperature, mucus production, and symptom scores. IL-6 elevations were also found in the circulation at this time point. In contrast, TNF-alpha responses peaked later (day 3 in plasma, day 4 in nasal fluids), when viral shedding and symptoms were subsiding. Similarly, IL-8 peaked late in the illness course (days 4-6) and correlated only with lower respiratory symptoms, which also occurred late. None of IL-1beta, IL-2, or TGF-beta levels increased significantly. These data implicate IL-6 and IFN-alpha as key factors both in symptom formation and host defense in influenza.
Background-Failure to generate phagocyte-derived superoxide and related reactive oxygen intermediates (ROIs) is the major defect in chronic granulomatous disease, causing recurrent infections and granulomatous complications. Chronic granulomatous disease is caused by missense, nonsense, frameshift, splice, or deletion mutations in the genes for p22 phox , p40 phox , p47 phox , p67 phox (autosomal chronic granulomatous disease), or gp91 phox (X-linked chronic granulomatous disease), which result in variable production of neutrophil-derived ROIs. We hypothesized that residual ROI production might be linked to survival in patients with chronic granulomatous disease.
There is considerable HIV-1 variation in patients. The extent of the variation is due to the high rate of viral replication, the high viral load, and the errors made during viral replication. Mutations can arise from errors made either by host DNA-dependent RNA polymerase II or by HIV-1 reverse transcriptase (RT), but the relative contributions of these two enzymes to the mutation rate are unknown. In addition, mutations in RT can affect its fidelity, but the effect of mutations in RT on the nature of the mutations that arise in vivo is poorly understood. We have developed an efficient system, based on existing technology, to analyze the mutations that arise in an HIV-1 vector in a single cycle of replication. A lacZ␣ reporter gene is used to identify viral DNAs that contain mutations which are analyzed by DNA sequencing. The forward mutation rate in this system is 1.4 ؋ 10 ؊5 mutations/bp/cycle, equivalent to the retroviral average. This rate is about 3-fold lower than previously reported for HIV-1 in vivo and is much lower than what has been reported for purified HIV-1 RT in vitro. Although the mutation rate was not affected by the orientation of lacZ␣, the sites favored for mutations (hot spots) in lacZ␣ depended on which strand of lacZ␣ was present in the viral RNA. The pattern of hot spots seen in lacZ␣ in vivo did not match any of the published data obtained when purified RT was used to copy lacZ␣ in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.