This paper presents an interpretation of the chemical binding found in the first-row homonuclear diatomic molecules. The interpretation is based upon the one-electron density distribution and the forces which it exerts on the nuclei. The general topographical features of the density distributions are discussed in relation to ``molecular size'' and the manner in which the total charge is partitioned between different spatial regions. The binding in these molecules is discussed in terms of the density difference distributions which picture the redistribution of charge which results from the formation of the molecule. It is proposed that the density difference distribution, or Δρ map, may be taken as the pictorial representation of the ``bond density.'' The forces exerted on the nuclei in the molecule are related to the changes in the charge distribution pictured in the ``bond density'' and a quantitative discussion of the manner in which electrostatic equilibrium is attained to give a stable molecule is given in terms of the forces. The concepts of bonding and antibonding are compared with the terms binding and antibinding, terms which are defined in terms of the forces exerted on the nuclei. In particular, both vertical and adiabatic ionization processes are viewed from the standpoint of the change in the electronic force contribution between the molecule and the molecule ion. A definition of ionic and covalent binding based on the density difference distributions is presented. The Δρ map (or bond density) for covalent binding is shown to be characterized by a density increase located between the nuclei and shared equally by each. The Δρ map for ionic binding exhibits an increase in charge density which is localized on a single nucleus. A partitioning of the total electronic force in accordance with the Δρ maps demonstrates that in covalent binding, the nuclei are bound by the density which is shared between them, while in ionic binding the nuclei are bound by the density which is localized on a single nucleus.
A systematic study is initiated of resonance Raman scattering in molecular systems with overlapping electronic absorption bands. Resonance Raman spectra, excitation profiles, and depolarization ratios are calculated for a simple molecular dimer in which the two overlapping Franck–Condon progressions are related through the permutational symmetry of the dimer. The model used is highly idealized, but can be solved exactly for a complete range of intermolecular coupling strengths. In the weak and strong intermolecular coupling regions, the exact results are compared with the physically more transparent results obtained from a low-order perturbation treatment. The spectra and profiles show properties characteristic of both totally symmetric and nontotally symmetric modes. The profiles and polarization dispersion curves are subject to both electronic and vibronic interference effects. Anomalous extrema of the depolarization ratio are often found to coincide with minima rather than maxima in the excitation profile. A pairwise comparison of the excitation profiles of Rayleigh lines, Raman fundamentals, and Raman overtones shows characteristic resonance–antiresonance coincidences. It is shown that interference effects of this sort are a general feature of systems exhibiting strong vibronic coupling.
Diagonalization of two-state, two-mode Hamiltonian matrix accounts quantitatively for the absorption and emission spectra of 1,8-diphenyl-1,3,5,7-octatetraene observed by Ikeyama and Azumi [J. Chem. Phys. 76, 5762 (1982)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.