Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified 10 novel risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with novel secondary signals at 4 of these). Notably, the new loci include candidate genes with roles in regulation of innate host defenses and T-cell function, underscoring the important contribution of (auto-)immune mechanisms to atopic dermatitis pathogenesis.
Pachyonychia congenita (PC) is a rare genodermatosis affecting the nails, skin, oral mucosae, larynx, hair, and teeth. Pathogenic mutations in keratins K6a or K16 are associated with the PC-1 phenotype whereas K6b and K17 mutations are associated with the PC-2 phenotype. Analysis of clinical, pathological, and genetic data from the literature and two research registries reveal that >97% of PC cases exhibit fingernail and toenail thickening, and painful plantar keratoderma. Prospective evaluation of 57 PC patients from 41 families revealed variable clinical findings: hyperhidrosis (79%), oral leukokeratosis (75%), follicular keratosis (65%), palmar keratoderma (60%), cutaneous cysts (35%), hoarseness or laryngeal involvement (16%), coarse or twisted hair (26%), early primary tooth loss (14%), and presence of natal or prenatal teeth (2%). Stratification of these data by keratin mutation confirmed the increased incidence of cyst formation and natal teeth among PC-2 patients, although cysts were more commonly seen in PC-1 than previously reported (25%-33%). Previously unreported clinical features of PC include development of painful oral and nipple lesions during breastfeeding, copious production of waxy material in ears, and inability to walk without an ambulatory aid (50%). Possible pathogenic mechanisms are discussed with respect to the clinicopathologic and genetic correlations observed.
Plectin is a widely expressed high molecular weight protein that is involved in cytoskeleton-membrane attachment in epithelial cells, muscle, and other tissues. The human autosomal recessive disorder epidermolysis bullosa with muscular dystrophy (MD-EBS) shows epidermal blister formation at the level of the hemidesmosome and is associated with a myopathy of unknown etiology. Here, plectin was found to be absent in skin and cultured keratinocytes from an MD-EBS patient by immunofluorescence and immunoprecipitation, suggesting that plectin is a candidate gene/protein system for MD-EBS mutation. The 14800-bp human plectin cDNA was cloned and sequenced. The predicted 518-kD polypeptide has homology to the actin-binding domain of the dystrophin family at the amino terminus, a central rod domain, and homology to the intermediate filament-associated protein desmoplakin at the carboxyl terminus. The corresponding human gene (PLECl), consisting of 33 exons spanning >26 kb of genomic DNA was cloned, sequenced, and mapped to chromosomal band 8q24. Homozygosity by descent was observed in the consanguineous MD-EBS family with intragenic plectin polymorphisms. Direct sequencing of PCR-amplified plectin cDNA from the patient's keratinocytes revealed a homozygous 8-bp deletion in exon 32 causing a frameshift and a premature termination codon 42 bp downstream. The clinically unaffected parents of the proband were found to be heterozygous carriers of the mutation. These results establish the molecular basis of MD-EBS in this family and clearly demonstrate the important structural role for plectin in cytoskeleton-membrane adherence in both skin and muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.