The objective of this study was to examine the relationship between mitochondrial function and residual feed intake in Angus steers. Individual feed intakes were recorded for a contemporary group of 40 steers via the GrowSafe feed intake system. Intakes were then used to calculate residual feed intake (RFI), a measure of efficiency. Based on these calculations, 9 low (RFI = -0.83) and 8 high (RFI = 0.78) RFI animals were selected for further study. Blood samples were collected via jugular venipuncture 1 wk before slaughter for the determination of plasma glucose and insulin concentrations. Tissue samples were taken from the LM from both the high and low RFI animals and mitochondria were isolated for measurement of oxygen consumption and hydrogen peroxide production. Average daily gain and carcass composition were not different between the high and low RFI steers; however, ADFI by the high RFI animals was 1.54 kg/d greater (P < 0.001) than for the low RFI animals. Low RFI steers exhibited a greater (P < 0.05) rate of state 2 and 3 respiration, respiratory control ratio, and hydrogen peroxide production than high RFI steers when provided with glutamate or succinate as a respiratory substrate. The acceptor control and adenosine diphosphate:oxygen ratios were not different between the 2 groups for either substrate. When hydrogen peroxide production was expressed as a ratio to respiration rate there was no difference between groups, signifying that electron leak was similar for both groups. Plasma glucose concentration was greater (P < 0.05) in the high RFI steers than in the low RFI steers; however, plasma insulin concentration was not different (P = 0.22) between the 2 groups. The ratio between plasma glucose and insulin concentration was similar (P = 0.88) between the 2 groups indicating no difference in glucose metabolism. The increased plasma glucose concentration observed in the high RFI steers was presumed to be the result of a greater feed intake by these animals. It seems that mitochondrial function is not different between the high and low RFI groups but rather the rate of mitochondrial respiration is increased in low RFI steers compared with high RFI steers.
British × Continental steers (initial BW = 484.6 kg) were fed at a commercial feed yard to evaluate the effects of β-agonists on live performance, carcass characteristics, and carcass subprimal yield. Weights and ultrasonic measurements were used to allocate steers to pens (n = 40) divided equally into 4 blocks, with 2 treatment replicates per block. Pens were randomly assigned to 1 of 5 treatments: control; ractopamine-HCl (RH) fed at 200 or 300 mg • steer(-1) • d(-1), or 400 mg • steer(-1) • d(-1) top dress for the final 30 d of feeding; or zilpaterol-HCl (ZH) fed at 7.5 mg/kg beginning 23 d before slaughter with a 3-d withdrawal period. Steers were harvested by block at a commercial facility over 4 wk. Carcass based performance measures were calculated using initial pen weights and actual DMI. From each pen, eight carcasses that were within ± 13.6 kg of the mean pen HCW were selected such that two carcasses were within each of the following four Yield Grade (YG) ranges: YG ≤ 2.8; 2.9-3.2; 3.3-3.5; YG > 3.5. Carcasses were fabricated by plant personnel to determine subprimal yield. Steers fed ZH had higher carcass-based ADG and carcass-based G:F compared with all other treatments (P < 0.05). Carcass-based ADG and carcass-based G:F were higher in RH treatments compared with controls (P < 0.05). Steers fed ZH had higher dressing percentages (1.0 to 1.6%) and larger LM area (4.3 to 6.7 cm(2)) than all other treatments (P < 0.05). Use of RH 400 and ZH increased HCW 6.3 and 11.1 kg, respectively compared with controls (P < 0.05). Compared with controls, RH 300 and ZH decreased marbling score and the frequency of carcasses qualifying for upper 2/3 Choice premiums (P < 0.05). Beta-agonists increased subprimal yield from the round and loin; however, blade meat was the only cut from the rib or chuck affected by β-agonists. Results from this study indicated improvements in performance and carcass traits as a result of β-agonist use; however, differences between ZH, RH 400, and RH 300 treatments were minimal for carcass traits and cutability. Increases in saleable yield following β-agonist use were not uniformly distributed across the four major primals and the majority of weight gain occurred in the lower priced cuts of the round and chuck. Increased response of the lower priced cuts to β-agonists could have economic implications to packers.
Effect of ractopamine hydrochloride (RH) and zilpaterol hydrochloride (ZH) on LM shear force and sensory attributes was determined using pens (n = 40) British × Continental crossbred steers randomly allocated to one of the following treatments: control; RH fed at 200 (RH 200) or 300 mg • steer(-1) • d(-1) (RH 300), or 400 mg • steer(-1) • d(-1) (RH 400) top-dressed for the final 30 d of feeding; or ZH fed at 7.5 mg/kg, beginning 23 d before slaughter with a 3-d withdrawal. Two replicates (pens) per treatment were represented in four blocks. Eighteen carcasses per pen were randomly selected and one 5-cm LM sample was removed from both carcass sides to be used for shear force and sensory evaluation. Samples were aged for 14 d, frozen at -28.8 °C, and cut into 2.5-cm steaks. All steaks were cooked to an internal temperature of 71.1 °C before being evaluated for Warner-Bratzler shear force (WBSF), slice shear force (SSF), or being fed to trained sensory panelists. Increasing dose and potency of β-agonist increased WBSF by 4 to 17% and SSF by 5 to 24% (P < 0.05). Steaks from steers fed ZH had higher WBSF and SSF values compared with all other treatments (P < 0.05), whereas steaks from controls and steers fed RH 200 were not different (P > 0.05). Probability of steaks failing to meet shear force standards to be certified tender (WBSF <4.4 kg, SSF < 20 kg) was increased from an initial probability of <0.06 in steaks from steers in the control treatment to 0.10 to 0.20 in steers fed RH 400 or ZH (P < 0.05). No difference was detected in panel ratings for overall tenderness of steaks from steers fed RH 200 compared with controls (P > 0.05). Steaks from steers fed RH 300 and RH 400 were comparable for all sensory attributes; however, both RH 300 and RH 400 were rated lower for overall tenderness than controls (P < 0.05). Panelists failed to detect differences in overall tenderness of steaks from steers fed RH 400 and ZH (P < 0.05). Panelists detected no difference in flavor profile or juiciness among treatments (P > 0.05). Results from this study indicated β-agonists negatively affected beef tenderness and these effects may be more noticeable in steers supplemented with ZH and higher doses of RH.
The objective of this study was to determine the relationships of uncoupling protein 2 and 3 expression, SNP of mitochondrial DNA, and residual feed intake (RFI) in Angus steers selected to have high or low RFI. Individual feed intake was measured via the GrowSafe feed intake system over a 3-mo period and used to calculate RFI, a measure of efficiency. Based on these calculations, 6 low- (average RFI = -1.57 kg) and 6 high- (average RFI = 1.66 kg) RFI steers were selected for further study. Blood was collected via jugular venipuncture 1 wk before slaughter for the isolation of mitochondrial DNA. The steers were then killed to collect LM for the measurement of uncoupling protein 2 and 3 mRNA and protein expression. Protein and mRNA expression of uncoupling protein 2 and 3 were determined by Western blotting and quantitative PCR, respectively. To determine SNP of mitochondrial DNA, total DNA was isolated from blood via standard phenol/chloroform extraction; fragments were amplified with PCR and sequenced with an automated nucleotide sequencer. Average daily gain and carcass composition were not different (P > 0.13) between the high- and low-RFI steers; however, ADFI by the high-RFI animals was 3.77 kg greater (P < 0.001) than the low-RFI animals. No difference (P > 0.55) was observed between the high- and low-RFI animals in their expression of uncoupling protein 2 or 3 mRNA or protein. On average 9.8 and 8.9 polymorphisms were found per mitochondrial genome for the low- and high-RFI steers, respectively. None of these polymorphisms were related to RFI. It seems that the expression of uncoupling protein 2 and 3 and mitochondrial DNA sequence are not related to RFI status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.