Hydrodynamic stability is of fundamental importance in fluid mechanics and is concerned with the problem of transition from laminar to turbulent flow. Drazin and Reid emphasise throughout the ideas involved, the physical mechanisms, the methods used, and the results obtained, and, wherever possible, relate the theory to both experimental and numerical results. A distinctive feature of the book is the large number of problems it contains. These problems not only provide exercises for students but also provide many additional results in a concise form. This new edition of this celebrated introduction differs principally by the inclusion of detailed solutions for those exercises, and by the addition of a Foreword by Professor J. W. Miles.
In studying the stability of a thermally stratified fluid in the presence of a viscous shear flow, we have a situation in which there is an important interaction between the mechanism of instability due to the stratification and the Tollmien-Schlichting mechanism due to the shear. A complete analysis has been carried out for the Bénard problem in the presence of a plane Poiseuille flow and it is shown that, although Squire's transformation can be used to reduce the three-dimensional problem to an equivalent two-dimensional one, a theorem of Squire's type does not follow unless the Richardson number exceeds a certain small negative value. This conclusion follows from the fact that, when the stratification is unstable and the Prandtl number is unity, the equivalent two-dimensional problem becomes identical mathematically to the stability problem for spiral flow between rotating cylinders and, from the known results for the spiral flow problem, Squire's transformation can then be used to obtain the complete three-dimensional stability boundary. For the case of stable stratification, however, Squire's theorem is valid and the instability is of the usual Tollmien—Schlichting type. Additional calculations have been made for this case which show that the flow is completely stabilized when the Richardson number exceeds a certain positive value.
The exact solution of the sixth-order differential equation which governs the stability of a viscous fluid contained between two rigid walls and heated from below is briefly reviewed and extended to include detailed results on the curve of neutral stability and the cell pattern at the onset of instability. Two approximate methods of solution are then discussed which employ a Fourier or Fourier-type expansion and which require the solution of only a fourth- or a second-order differential equation. A comparison of these approximate results with the exact solution gives some insight into the relative accuracy of these methods when applied to other more general problems for which an exact solution cannot be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.