Optical-trapping forces exerted on polystyrene microspheres are predicted and measured as a function of sphere size, laser spot size, and laser beam polarization. Axial and transverse forces are in good and excellent agreement, respectively, with a ray-optics model when the sphere diameter is ≥ 10 µm. Results are compared with results from an electromagnetic model when the sphere size is ≤ 1 µm. Axial trapping performance is found to be optimum when the numerical aperture of the objective lens is as large as possible, and when the trapped sphere is located just below the chamber cover slip. Forces in the transverse direction are not as sensitive to parametric variations as are the axial forces. These results are important as a first-order approximation to the forces that can be applied either directly to biological objects or by means of microsphere handles attached to the biological specimen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.