The behavior of constricted vacuum arcs on Radial Magnetic Field (RMF) contacts in vacuum tubes of medium voltage circuit breakers strongly determines the breaking capacity of these contact systems. The movement of these arcs under the influence of the RMF is investigated with the help of a one-dimensional (1D) thermodynamic model of the arc and its interaction with the contact surface. Heat conduction and evaporation are taken care of analytically, while the size of the arc root and, hence, its current density has been determined experimentally. The energy balance is solved by using empirical values for the respective sheath voltage drops. It is complemented by a momentum balance incorporating neutral vapor loss from the arc boundaries, which is found to be essential for the quantitative understanding of the arc physics. A time-dependent analysis of the arc properties like the arc velocity during a sine half-wave produces a good agreement with experimental values measured for different sizes of contrate contacts. The model is explained and compared to experimental results of arc velocity and experimentally determined switching capacity, respectively.
The post-arc (PA) characteristics of vacuum arcs in transverse magnetic field contacts are studied for short-circuit currents of up to 123 kA peak and transient recovery voltages below 875 V. The measured PA currents are interpreted in terms of an Electric Resistance Model and the models of Andrews-Varey, Langmuir-Child, and Slepian-Schmelzle. Whereas in the late PA period, the calculations do not agree well with the measurements, the PA behavior is well described in the early period after current-zero. It is concluded that the PA discharge is amplified by ionization of metal vapor particles in the boundary sheath due to electron impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.