The discovery of design principles for effective and robust binder systems is key toward pushing the boundaries of electrochemical performance in next-generation high-capacity anode electrodes. To achieve high-performing multicomponent binder systems, rational design of polymer formulations must be conducted to carefully tune the different physical, mechanical, chemical, conductive, and transport properties of the composite electrode. Here, we look at electrochemical performance through a polymer configuration lens to understand how intercomponent interactions of a co-binder polymeric system affect mechanical properties and electrochemical behavior of a magnetite composite electrode. By systemically changing the chain length of a poly(vinyl alcohol)/ poly(acrylic acid) (PVA/PAA) blend, we investigate the effect of pairwise interactions between the polymers to shed light on mechanistic frameworks that affect electrochemical performance. We discovered that electrochemical results coincide with three polymer configurational regimes that depend on chain length. These results contribute to the growing body of work that aims to elucidate experimental design principles that aid in pushing development of binder systems for high-performing power-dense anode formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.