Samples of flax (Linum usitatissimum) stems from the cultivars 'Natasja' and 'Ariane' were separated into fibre and core fractions and analysed by gasliquid chromatographic methods, 13C CPMAS NMR spectrometry, histochemistry, electron microscopy and UV absorption microspectrophotometry to assist in determining the structure and composition of these cell walls in relation to quality and utilisation. Analyses from chromatography and NMR gave similar results for carbohydrate and phenolic constituents in various samples and in the lower, more mature regions of the stem. Amounts of uronic acids and xylose were lower while amounts of mannose, galactose and glucose were higher in fibre vs core fractions. Quantities of phenolic constituents were significantly higher in the core than the fibre, with groups representative of both guaiacyl and syringyl lignins; amounts of phenolic acids were low. NMR showed a low intensity signal for aromatics in fibre, and it is possible that such signals arise from compounds in the cuticle rather than the fibre. Microscopic studies indicated that aromatic constituents were present in core cell walls, cuticle of the epidermis, and cell corners and middle lamellae of some regions within the fibre tissues. The lignin in fibre appeared to be of the guaiacyl type and may be too low in concentration to be unambiguously detected by NMR. Aromatic compounds were not observed in the epidermis or parenchyma cell walls. Similar analyses of dewretted (unscutched) samples indicated that core tissues were mostly unchanged from unretted samples. Retted fibre tissues still contained lignified cell corners and middle lamellae in some regions. The cuticle, which was associated with retted fibres, was not degraded by dew-retting fungi. Fungi removed interfibre materials in some places and at times degraded the secondary wall near the cell lumen of fibre cells. Results indicate that microspectrophotometry and histochemistry are useful to identify the location and type of aromatics in fibre cell walls.Key words: bast, Linum usitatissimum, lignin, carbohydrate, NMR, gas-liquid chromatography, histochemistry, microscopy, microspectrophotometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.