Although many groups have studied the initial growth stages of various metals, including indium, there is little information in literature on diameter distributions of indium in relation to film thickness or annealing conditions. This paper reports island size distributions of thermally evaporated In islands on Si (100) and Si (111) substrates for nominal film thicknesses ranging from 5 to 50 nm. Because indium has a low melting temperature, and therefore a high homologous temperature at room temperature, 3-dimensional islands form during deposition with no subsequent heat treatments needed. Island diameters were calculated using commercial image analysis software in conjunction with SEM images of the samples. It is found that there is a bimodal island diameter distribution for nominal indium thicknesses greater than 5 nm. While the diameters of the larger islands increase exponentially with nominal thickness, those of the smaller islands increase linearly, and therefore more slowly, with nominal thickness. For nominal thickness of 50 nm, the average diameters of the small and large islands differ by almost an order of magnitude. Anneal conditions were studied in an attempt to narrow diameter distributions. Samples of each nominal thickness were annealed at temperatures ranging from 360˚C to 550˚C and the diameters again measured. The range of island diameters become narrower with 360 º C anneal and volume average island diameter increases by ~30-50%. This narrowing of the distribution occurs due to smaller islands being absorbed by the larger in a process akin to Ostwald ripening, which is facilitated by higher surface diffusivities at higher homologous temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.