Abstract-The mobilization of K, rare earth elements (REE), Th, and U from Martian surface material upon contact with acidic solutions probably occurred extensively on Mars about 4 to 3.5 Ga ago and seems to have occurred locally in more recent times. We have studied the dissolution of these elements by leaching the basaltic shergottite Zagami and the terrestrial basalt BE-N at constant pH values ranging from 5 to 1 in the absence and presence of added salts. Potassium is nearly immobile in Zagami and mobilized readily from BE-N. The REE reside mostly in calcium phosphates and dissolve readily, with those in whitlockite of Zagami reacting slightly better than those in apatite of BE-N. Thorium and U also reside mostly in calcium phosphates. Both dissolve similarly for both basalts and less readily than the REE. The experiments indicate the extent of the mobilization of K, REE, Th, and U, when acidic water leached the surface of Mars. Potassium was released slowly and in a small relative amount. The REE, and particularly the LREE, became mobile readily and were possibly distributed over large areas before immobilization. Thorium and U dissolved more slowly than the REE and were distributed less widely.
Abstract-Terrestrial alteration of meteorites results in the redistribution, gain, or loss of uranium and other elements. We have measured the maximum U adsorption capacity of a meteorite and two geochemical reference materials under conditions resembling terrestrial ones (pH 5.8). The basaltic eucrite Sioux County adsorbs 7 ppm of U. The result for the terrestrial granite AC-E is similar (5 ppm), while the basalt BE-N adsorbs 34 ppm of U.We have also investigated U adsorption in the presence of phosphate (0.01 M or less) in imitation of conditions that probably occurred in the earlier history of Mars. Such a process would have alterated Martian surface material and would be noticeable in Martian meteorites from the affected surface. The experiments demonstrated the counteracting effects of phosphate, which increases U adsorption, but decreases the quantity of dissolved U that is available for adsorption. U adsorption by AC-E increases to 7 ppm. The lowered value for BE-N of 8 ppm results from the low quantity of dissolved U in the volume of solution used.The results from the adsorption experiments and from leaching the Martian meteorite Zagami and a terrestrial basalt imply that the aqueous redistribution of U on Mars was moderate. Acidic liquids mobilized uranium and other metals, but present phosphate impeded the dissolution of U compounds. Some mobilized U may have reached the global sinks, while most of it probably was transported in the form of suspended particles over a limited distance and then settled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.