Finite-amplitude, axially symmetric oscillations of small (0.2 mm) liquid droplets in a gaseous environment are studied, both experimentally and theoretically. When the amplitude of natural oscillations of the fundamental mode exceeds approximately 10% of the droplet radius, typical nonlinear effects like the dependence of the oscillation frequency on the amplitude, the asymmetry of the oscillation amplitude, and the interaction between modes are observed. As the amplitude decreases due to viscous damping, the oscillation frequency and the amplitude decay factor reach their asymptotical values predicted by linear theory. The initial behaviour of the droplet is described quite satisfactorily by a proposed nonlinear inviscid theoretical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.