Local elevations in intracellular calcium ("Ca2+ sparks") in heart muscle are elementary sarcoplasmic reticulum (SR) Ca(2+)-release events. Ca2+ sparks occur at a low rate in quiescent cells but can also be evoked by electrical stimulation of the cell to produce the cell-wide Ca2+ transient. In this study we investigate how Ca2+ sparks are related to propagating waves of elevated cytosolic Ca2+ induced by "Ca2+ overload." Single ventricular myocytes from rat were loaded with the Ca(2+)-sensitive indicator fluo 3 and imaged with a confocal microscope. After extracellular Ca2+ concentration was increased from 1 to 10 mM to produce Ca2+ overload, the frequency of spontaneous Ca2+ sparks, which occur at the t tubule/SR junction, increased approximately 4-fold, whereas the spark amplitude and spatial size increased 4.1-and 1.7-fold, respectively. In addition, a spectrum of larger subcellular events, including propagating Ca2+ waves, was observed. Ca2+ sparks were seen to occur at the majority (65%) of the sites of wave initiation. For slowly propagating Ca2+ waves, discrete Ca(2+)-release events, similar to Ca2+ sparks, were detected in the wave front. These Ca2+ sparks appeared to recruit other sparks along the wave front so that the wave progressed in a saltatory manner. We conclude that Ca2+ sparks are elementary events that can explain both the initiation and propagation of Ca2+ waves. In addition, we show that Ca2+ waves and electrically evoked Ca2+ transients have the same time course and interact with each other in a manner that is consistent with both phenomena having the same underlying mechanism(s). These results suggest that SR Ca2+ release during Ca2+ waves, like that during normal excitation-contraction coupling, results from the spatial and temporal summation of Ca2+ sparks.
Skeletal muscle uses voltage sensors in the transverse tubular membrane that are linked by protein-protein interactions to intracellular ryanodine receptors, which gate the release of calcium from the sarcoplasmic reticulum. Here we show, by using voltage-clamped single fibres and confocal imaging, that stochastic calcium-release events, visualized as Ca2+ sparks, occur in skeletal muscle and originate at the triad. Unitary triadic Ca(2+)-release events are initiated by the voltage sensor in a steeply voltage-dependent manner, or occur spontaneously by a mechanism independent of the voltage sensor. Large-amplitude events also occur during depolarization and consist of two or more unitary events. We propose a 'dual-control' model for discrete Ca2+ release events from the sacroplasmic reticulum that unifies diverse observations about Ca(2+)-signalling in frog skeletal muscle, and that may be applicable to other excitable cells.
2. Under the influence of strophanthidin, depolarizing clamp pulses were followed by a transient inward current (TI) which was small or absent in untreated preparations. The TI also appeared in the wake of a train of action potentials. It was designated TI because its magnitude and timing were appropriate to account for the TD.3. Longitudinal voltage non-uniformity during the TI was determined with two voltage-recording micro-electrodes. Although the non-uniformity was not severe, the TI wave form was observed when the voltage difference signal was used to measure membrane current density.4. Over the diastolic range of potential, the strophanthidin-induced TI appeared superimposed upon the normal pace-maker mechanism, the decay of a potassium current, isK. The TI could be dissociated from icK however, by means of its unusual kinetic properties.5. TIs could also be recorded at holding potentials positive to -55 mV,i.e. outside the range where iK deactivation occurs.6. The TI amplitude showed a slow and strongly sigmoid dependence on the duration of the preceding depolarizing pulse. Stronger depolarizations increased the TI amplitude and speeded its development. Cooling reduced the TI amplitude, while slowing and exaggerating the sigmoid time-dependence.7. Two clamp pulses in close succession gave additive effects in evoking a subsequent TI. This finding and the sigmoid time-dependence fit with previous observations that TDs are most prominent following a series of closely spaced action potentials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.