The Lost City hydrothermal field is an iconic example of a microbial ecosystem fueled by energy and carbon from Earth’s mantle. Uplift of mantle rocks into the seafloor can trigger a process known as serpentinization that releases molecular hydrogen (H 2 ) and creates unusual environmental conditions where simple organic carbon molecules are more stable than dissolved inorganic carbon.
Monoterpene composition of cortical tissue was analyzed in slash pine (Pinuselliottii Engelm. var. elliottii) and loblolly pine (Pinustaeda L.) clones with known breeding values for fusiform rust resistance. Trees having a relatively high content of β-phellandrene tend to be more resistant than trees with a low β-phellandrene content. Such results confirm previous data and suggest the utilization of β-phellandrene content as an aid in selecting relatively rust resistant slash and loblolly pines.
Alkaline fluids venting from chimneys of the Lost City hydrothermal field flow from a potentially vast microbial habitat within the seafloor where energy and organic molecules are released by chemical reactions within rocks uplifted from Earth's mantle. In this study, we investigated hydrothermal fluids venting from Lost City chimneys as windows into subseafloor environments where the products of geochemical reactions, such as hydrogen (H2), formate, and methane, may be the only available sources of energy for biological activity. Our deep sequencing of metagenomes and metatranscriptomes from these hydrothermal fluids revealed a few key species of archaea and bacteria that are likely to play critical roles in the subseafloor microbial ecosystem. We identified a population of Thermodesulfovibrionales (belonging to phylum Nitrospirae) as a prevalent sulfate-reducing bacterium that may be responsible for much of the consumption of H2 and sulfate in Lost City fluids. Metagenome-assembled genomes (MAGs) classified as Methanosarcinaceae and Candidatus Bipolaricaulota were also recovered from venting fluids and represent potential methanogenic and acetogenic members of the subseafloor ecosystem. These genomes share novel hydrogenases and formate dehydrogenase-like sequences that may be unique to hydrothermal and subsurface alkaline environments where hydrogen and formate are much more abundant than carbon dioxide. The results of this study include multiple examples of metabolic strategies that appear to be advantageous in hydrothermal and subsurface environments where energy and carbon are provided by geochemical reactions.
Controlled mass pollination (CMP) is one way to increase genetic gains from traditional wind-pollinated seed orchards. Methodology is under development by several forestry companies in the southern USA. Costs of CMP depend on the efficient installation, pollination, and removal of inexpensive paper bags. Even in pilot-scale studies these costs seem reasonable. Net present values from CMP in a sample of sixty-seven loblolly pine (Pinus taeda L.) seed orchards in the Western Gulf Forest Tree Improvement Program are conservatively expected to average $108 per acre of plantation established with seedlings from CMP among the best six parents in each of five breeding regions and $154 per acre for CMP among the best pair of parents in each breeding region. Key words: supplemental mass pollination, expected genetic gains, pollen contamination
In recent years, several studies have examined the effect of microfibril angle (MFA) on wood quality. However, little research has been conducted upon the genetic mechanisms controlling MFA. In this study, we examined the heritability of MFA in loblolly pine, Pinus taeda L.,and its genetic relationships with height, diameter, volume, and specific gravity. Increment cores were collected at breast height from 20 to 25 progeny from each of 12 to 17 crosses (among 11 parents) in two modified partial-diallels in different locations in southern Arkansas. Specific gravitywas measured on segments containing rings 1 through 5 and on segments containing rings 6 through 20. MFA was measured on the earlywood and latewood sections of rings 4, 5, 19, and 20. Rings 4 and 5 were chosen as representative of core wood and rings 19 and 20 as representative of outer wood. Analyses of variance revealed statistically significant genetic and environmental influences on MFA. Significant general combining ability (GCA), specific combining ability (SCA), and SCA × block effects indicated that there are both additive and nonadditive genetic influences on MFA. Individual-tree, narrow-sense heritability estimates were variable, ranging from 0.17 for earlywood (ring) 4 MFA to 0.51 for earlywood (ring) 20 MFA. Genetic correlations between MFA, specific gravity, and the growth traits were nonsignificant due to large estimated standard errors. South.J. Appl. For. 28(4):196–204.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.