We present a microscopic model that successfully explains the ultrafast equilibration of magnetic order in ferromagnetic metals at a time scale tau(M) of only a few hundred femtoseconds after pulsed laser excitation. It is found that tau(M) can be directly related to the so-called Gilbert damping factor sigma that describes damping of GHz precessional motion of the magnetization vector. Independent of the spin-scattering mechanism, an appealingly simple equation relating the two key parameters via the Curie temperature T(C) is derived, tau(M) approximately c(0)h/k(B)T(C)sigma, with h and k(B) the Planck and Boltzmann constants, respectively, and the prefactor c(0) approximately 1/4). We argue that phonon-mediated spin-flip scattering may contribute significantly to the sub-ps response.
In this paper we reinterpret the magnetic-susceptibility data and present and discuss specificheat data on MEM-(TCNQ)2 in terms of a spin-Peierls transition theory. We find that the data can be described reasonably well by a mean-field spin-Peierls transition theory which suggests that at low temperatures the TCNQ chain should be tetramerized. The magnetic susceptibility above the transition temperature is shown. to behave like a one-dimensiona) Heisenberg antiferromagnet. The consequences of this behavior on the relative magnitude of the on-site Coulomb interaction are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.