Here first a 2D dual-metal (Co/Zn) and leaf-like zeolitic imidazolate framework (ZIF-L)-pyrolysis approach is reported for the low-cost and facile preparation of Co nanoparticles encapsulated into nitrogen-doped carbon nanotubes (Co-N-CNTs). Importantly, the reasonable Co/Zn molar ratio in the ZIF-L is the key to the emergence of the encapsulated microstructure. Specifically, high-dispersed cobalt nanoparticles are fully encapsulated in the tips of N-CNTs, leading to the full formation of highly active Co-N-C moieties for oxygen reduction and evolution reactions (ORR and OER). As a result, the obtained Co-N-CNTs present superior electrocatalytic activity and stability toward ORR and OER over the commercial Pt/C and IrO 2 as well as most reported metal-organic-framework-derived catalysts, respectively. Remarkably, as bifunctional air electrodes of the Zn-air battery, it also shows extraordinary charge-discharge performance. The present concept will provide a guideline for screening novel 2D metal-organic frameworks as precursors to synthesize advanced multifunctional nanomaterials for cross-cutting applications.
Highly efficient lead halide perovskites with tunable emission performance have become new candidate materials for light‐emitting devices and displays; however, the toxicity of lead and instability of halide perovskites greatly limits their application. Herein, rapid and large‐scale synthesis of highly emissive organic–inorganic manganese halide perovskites, (C5H6N)2MnBr4 and C5H6NMnCl3, are presented by a one‐pot solution‐based method, of which (C5H6N)2MnBr4 displays a high absolute photoluminescence quantum yield (95%) in the solid‐state. The developed (C5H6N)2MnBr4 perovskite noticeably exhibits high stability. Therefore both as‐synthesized green and red emissive manganese‐based phosphors with superior optical properties are used to fabricate blue light pumped white light‐emitting diodes (WLEDs), displaying excellent quality white light with a high color rendering index value of 91 and a correlated color temperature of 5331 K. This study not only presents the robust large‐scale production synthetic approach for organic–inorganic manganese halide perovskites, but also facilitates the development of high‐performance phosphors for future lighting and display technologies.
We report fabrication of microscale Ta mold inserts by micro-electrical-discharge-machining (lEDM). Morphology, chemistry, and structure of the near-surface region of as-lEDMed Ta blanks have been characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. A TaC surface layer forms on as-lEDMed Ta surfaces. This altered surface layer was removed by electro-chemical-polishing. Further modification of Ta insert surfaces was accomplished by deposition of a conformal Ti-containing hydrogenated carbon coating. We demonstrate successful replication of high-aspectratio microscale structures in Al and Cu by compression molding with such surface-engineered Ta mold inserts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.