A new method for calculating intermittency in transitional boundary layers with changing pressure gradients is proposed and tested against standard turbomachinery flow cases. It is based on recent experimental studies which show the local pressure gradient parameter to have a significant effect on turbulent spot spreading angles and propagation velocities (and hence transition length). This can be very important for some turbomachinery flows. On a turbine blade suction surface for example, it is possible for transition to start in a region of favorable pressure gradient and finish in a region of adverse pressure gradient. Calculation methods which estimate the transition length from the local pressure gradient parameter at the start of transition will seriously overestimate the transition length under these conditions. Conventional methods based on correlations of zero pressure gradient transition data are similarly inaccurate. The new calculation method continuously adjusts the spot growth parameters in response to changes in the local pressure gradient through transition using correlations based on data given in the companion paper by Gostelow, Melwani and Walker (1995). Recent experimental correlations of Gostelow, Blunden and Walker (1994) are used to estimate the turbulent spot generation rate at the start of transition. The method has been incorporated in a linear combination integral computation and tested with good results on cases which report both the intermittency and surface pressure distribution data. It has resulted in a much reduced sensitivity to errors in predicting the start of the transition zone, and can be recommended for engineering use in calculating boundary layer development on axial turbomachine blades.
Measurements are presented of the calmed region behind triggered wave packets and turbulent spots under a controlled diffusion adverse pressure gradient in a wind tunnel. Similar measurements are also presented from the stator blades of an axial flow compressor, where turbulent spots are induced by the passing of rotor wakes. The purpose is to gain an appreciation of turbulent spot behavior under a strong adverse pressure gradient as a foundation for the more accurate modeling of spots and their environment in predictions of transitional boundary layer flows. Under an adverse pressure gradient the calmed region behind the spot is extensive; its interaction with the surrounding boundary layer is complex and is dependent on whether the surrounding natural boundary layer is laminar or turbulent. Some insights are gleaned concerning the behavior of the calmed region, which will subsequently be used in attempts to model the calmed region. Although these fundamental investigations of the calmed region have been extensive, much remains to be understood.
Measurements are presented of the calmed region behind triggered wave packets and turbulent spots under a controlled diffusion adverse pressure gradient in a wind tunnel. Similar measurements are also presented from the stator blades of an axial flow compressor, where turbulent spots are induced by the passing of rotor wakes. The purpose is to gain an appreciation of turbulent spot behavior under a strong adverse pressure gradient as a foundation for the more accurate modeling of spots and their environment in predictions of transitional boundary layer flows. Under an adverse pressure gradient the calmed region behind the spot is extensive; its interaction with the surrounding turbulent layer is complex and is dependent on whether the surrounding natural boundary layer is laminar or turbulent. Some insights are gleaned concerning the behavior of the calmed region which will subsequently be used in attempts to model the calmed region. Although these fundamental investigations of the calmed region have been extensive much remains to be understood.
The interaction between wakes of an adjacent rotor-stator or stator-rotor blade row pair in an axial turbomachine is known to produce regular spatial variations in both the time-mean and unsteady flow fields in a frame relative to the upstream member of the pair. This paper examines the influence of such changes in the free-stream disturbance field on the viscous losses of a following blade row. Hot-wire measurements are carried out downstream of the outlet stator in a 1.5-stage axial compressor having equal blade numbers in the inlet guide vane (IGV) and stator rows. Clocking of the IGV row is used to vary the disturbance field experienced by the stator blades: the influence on stator wake properties is evaluated. The magnitude of periodic fluctuations in ensemble-average stator wake thickness is significantly influenced by IGV wake-rotor wake interaction effects. The changes in time-mean stator losses appear marginal.
A new method for calculating intermittency in transitional boundary layers with changing pressure gradients is proposed and tested against standard turbomachinery flow cases. It is based on recent experimental studies, which show the local pressure gradient parameter to have a significant effect on turbulent spot spreading angles and propagation velocities (and hence transition length). This can be very important for some turbomachinery flows. On a turbine blade suction surface, for example, it is possible for transition to start in a region of favorable pressure gradient and finish in a region of adverse pressure gradient. Calculation methods that estimate the transition length from the local pressure gradient parameter at the start of transition will seriously overestimate the transition length under these conditions. Conventional methods based on correlations of zero pressure gradient transition data are similarly inaccurate. The new calculation method continuously adjusts the spot growth parameters in response to changes in the local pressure gradient through transition using correlations based on data given in the companion paper by Gostelow et al. (1996). Recent Experimental Correlations of Gostelow et al. (1994a) are used to estimate the turbulent spot generation rate at the start of transition. The method has been incorporated in a linear combination integral computation and tested with good results on cases that report both the intermittency and surface pressure distribution data. It has resulted in a much reduced sensitivity to errors in predicting the start of the transition zone, and can be recommended for engineering use in calculating boundary layer development on axial turbomachine blades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.