Abstract. A careful analysis of the backward recurrence algorithm for evaluating approximants of continued fractions provides rigorous bounds for the accumulated relative error due to rounding. Such errors are produced by machine operations which carry only a fixed number v of significant digits in the computations. The resulting error bounds are expressed in terms of the machine parameter v. The derivation uses a basic assumption about continued fractions, which has played a fundamental role in developing convergence criteria. Hence, its appearance in the present context is quite natural. For illustration, the new error bounds are applied to two large classes of continued fractions, which subsume many expansions of special functions of physics and engineering, including those represented by Stieltjes fractions. In many cases, the results insure numerical stability of the backward recurrence algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.