Interactions between stabilizer and milk protein are believed to influence the stabilizing behavior of the milk system. We investigated changes in fluorescence intensity induced by interactions of soybean soluble polysaccharide (SSPS) and milk protein (Mp) during acidification. The fluorescence intensity (If) of Mp increased as pH decreased from 6.8 to 5.2. Compared with Mp alone, If of SSPS-Mp mixtures increased as the pH decreased from 6.8 to 5.2. We found that the If of the SSPS-Mp mixture decreased in a pH range from 5.2 to 3.6, which indicated a change in the polarity microenvironment around the Trp residues. We also found that the maximum emission wavelength (λmax) shifted from 337 to 330nm as pH decreased from 6.8 to 3.6, in further support of SSPS interacting with the polar portion of Mp during acidification. Furthermore, an excited monomeric molecule (pyrene exciplex) was found as a ground-state pyrene formed and a broad band was shown at about 450nm. The intensity ratio of the first peak to the third peak (I1:I3) of Mp increased slightly, and the ratio of intensity of pyrene exciplex to monomer (Ie:Im) decreased because pyrene molecules were located in a less hydrophobic microenvironment during acidification. However, the ratio of I1:I3 decreased clearly at pH below 5.6 and the ratio of Ie:Im showed the opposite trend in the SSPS-Mp mixture. Changes in intrinsic and exogenous fluorescence intensity confirmed that interactions of SSPS and Mp could change the polarity of the microenvironment and that SSPS probably interacted with the polar portion of Mp. These results could give insight into the behavior of stabilizers in acid milk products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.