(Ti,V)2AlC solid solutions with Al2O3 addition were produced by solid state combustion involving aluminothermic reduction in the mode of self-propagating high-temperature synthesis (SHS). Starting materials included Ti/V2O5/Al/Al4C3 and TiO2/V2O5/Al/Al4C3 powder mixtures. Attempts were made to obtain (Ti1-xVx)2AlC with a broad substitution percentage. Combustion exothermicity was increased by increasing V2O5 for the yield of a higher proportion of V at the substitution site, which not only increased the combustion temperature and reaction front velocity, but also facilitated the evolution of (Ti,V)2AlC. The Ti-containing samples showed higher reaction exothermicity and better product formation than those adopting TiO2. As a result, (Ti1-xVx)2AlC with x from 0.2 to 0.8 was produced from the samples composed of the Ti/V2O5/Al/Al4C3 mixture. The (Ti,V)2AlC/Al2O3 composites synthesized in this study exhibited a laminated microstructure with closely-stacked (Ti,V)2AlC slabs of about 0.30.8 μm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.