We study the analogue of polynomials (solutions to ∆ n+1 u = 0 for some n) on the Sierpinski gasket (SG) with respect to a family of symmetric, self-similar Laplacians constructed by Fang, King, Lee, and Strichartz, extending the work of Needleman, Strichartz, Teplyaev, and Yung on the polynomials with respect to the standard Kigami Laplacian. We define a basis for the space of polynomials, the monomials, characterized by the property that a certain "derivative" is 1 at one of the boundary points, while all other "derivatives" vanish, and we compute the values of the monomials at the boundary points of SG. We then present some data which suggest surprising relationships between the values of the monomials at the boundary and certain Neumann eigenvalues of the family of symmetric self-similar Laplacians. Surprisingly, the results for the general case are quite different from the results for the Kigami Laplacian.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.