With a standard set of primers directed toward conserved regions, we have used the polymerase chain reaction to amplify homologous segments of mtDNA from more than 100 animal species, including mammals, birds, amphibians, fishes, and some invertebrates. Amplification and direct sequencing were possible using unpurified mtDNA from nanogram samples of fresh specimens and microgram amounts of tissues preserved for months in alcohol or decades in the dry state. The bird and fish sequences evolve with the same strong bias toward transitions that holds for mammals. However, because the light strand of birds is deficient in thymine, thymine to cytosine transitions are less common than in other taxa. Amino acid replacement in a segment of the cytochrome b gene is faster in mammals and birds than in fishes and the pattern of replacements fits the structural hypothesis for cytochrome b. The unexpectedly wide taxonomic utility ofthese primers offers opportunities for phylogenetic and population research.During the past decade, geneticists and taxonomists have used restriction endonucleases rather than sequencing to examine variation within and between species in specific segments of DNA (1-7). Although the indirect assessment of sequence variation obtained with the restriction endonuclease method is known to have many drawbacks, § sequence data have been difficult to obtain. The construction and screening of clone libraries has been too tedious and have demanded too much expertise for routine use by those geneticists and taxonomists who must analyze many individuals.Dependence on restriction analysis has limited our understanding of the dynamics of DNA sequence evolution. The presence or absence of a restriction site reveals little about the kinds of nucleotide substitutions that have occurred. Thus, although restriction analysis of mtDNA from closely related mammals first showed that these genomes have a higher rate of evolutionary substitution than does nuclear DNA, the demonstration that this acceleration results mainly from an increase in the number of transitions relative to transversions came only from conventional cloning and sequencing (1, 3). Because most studies of animal mtDNA have used restriction analysis, it has been difficult to determine whether a high rate of evolution and a transition bias are characteristic of all animal mtDNAs (8-10). There has been a need for simple methods of sequencing mtDNA to examine the pattern of evolutionary substitution in other animal groups.
We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 Mb and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than 1/3 of Daphnia’s genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The co-expansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes – including many additional loci within sequenced regions that are otherwise devoid of annotations – are the most responsive genes to ecological challenges.
The mutation process ultimately defines the genetic features of all populations and, hence, has a bearing on a wide range of issues involving evolutionary genetics, inheritance, and genetic disorders, including the predisposition to cancer. Nevertheless, formidable technical barriers have constrained our understanding of the rate at which mutations arise and the molecular spectrum of their effects. Here, we report on the use of complete-genome sequencing in the characterization of spontaneously arising mutations in the yeast Saccharomyces cerevisiae. Our results confirm some findings previously obtained by indirect methods but also yield numerous unexpected findings, in particular a very high rate of point mutation and skewed distribution of base-substitution types in the mitochondrion, a very high rate of segmental duplication and deletion in the nuclear genome, and substantial deviations in the mutational profile among various model organisms.chromosomal instability ͉ mitochondrion ͉ mutation rate ͉ mutational spectrum ͉ Saccharomyces cerevisiae D espite its relevance to every aspect of genetics and evolution, our understanding of the mutation process and its bearing on organismal fitness remains quite limited (1-4). Owing to the technical difficulties in directly observing very low-frequency events, most estimates of the per-nucleotide mutation rate are derived either from surveys of visible mutations at reporter loci (to enhance the detectability of mutations) or from nucleotide-sequence comparisons of silent sites in distantly related species (to magnify the accumulation of mutations). Neither approach is without problems, the first requiring assumptions about the fraction of mutations with observable phenotypic effects and the second relying on assumptions about interspecific divergence times, generation lengths, and neutrality of the monitored nucleotide sites.Long-term mutation-accumulation (MA) experiments, whereby replicate lines are taken through regular bottlenecks to minimize the efficiency of selection, have proven to be highly valuable resources for procuring spontaneous mutations in an essentially unbiased fashion (5-8). However, brute-force sequencing of PCR-amplified products constrains the number of mutations that can be detected in a reasonable amount of time. Here, we demonstrate the feasibility of whole-genome sequencing as a means to assay the complete spectrum of mutational effects in a moderately sized eukaryotic genome.Our analyses are based on an examination of parallel MA lines of a key model system, the yeast Saccharomyces cerevisiae. The initially isogenic lines were passed through 200 single-cell bottlenecks on a 3-to 4-day cycle of clonal growth for a total of Ϸ4,800 cell divisions per line [see supporting information (SI) Text]. Although there is some opportunity for the selective elimination of deleterious mutations during daily clonal amplification, this effect is quite small under the imposed bottlenecking procedure. For mutations with a relative selective disadvantage of s ϭ ...
Biodiversity is of crucial importance for ecosystem functioning, sustainability and resilience, but the magnitude and organization of marine diversity at a range of spatial and taxonomic scales are undefined. In this paper, we use second-generation sequencing to unmask putatively diverse marine metazoan biodiversity in a Scottish temperate benthic ecosystem. We show that remarkable differences in diversity occurred at microgeographical scales and refute currently accepted ecological and taxonomic paradigms of meiofaunal identity, rank abundance and concomitant understanding of trophic dynamics. Richness estimates from the current benchmarked Operational Clustering of Taxonomic Units from Parallel UltraSequencing analyses are broadly aligned with those derived from morphological assessments. However, the slope of taxon rarefaction curves for many phyla remains incomplete, suggesting that the true alpha diversity is likely to exceed current perceptions. The approaches provide a rapid, objective and cost-effective taxonomic framework for exploring links between ecosystem structure and function of all hitherto intractable, but ecologically important, communities.
Knowledge of mutation processes is central to understanding virtually all evolutionary phenomena and the underlying nature of genetic disorders and cancers. However, the limitations of standard molecular mutation detection methods have historically precluded a genomewide understanding of mutation rates and spectra in the nuclear genomes of multicellular organisms. We applied two high-throughput DNA sequencing technologies to identify and characterize hundreds of spontaneously arising base-substitution mutations in 10 Caenorhabditis elegans mutation-accumulation (MA)-line nuclear genomes. C. elegans mutation rate estimates were similar to previous calculations based on smaller numbers of mutations. Mutations were distributed uniformly within and among chromosomes and were not associated with recombination rate variation in the MA lines, suggesting that intragenomic variation in genetic hitchhiking and/or background selection are primarily responsible for the chromosomal distribution patterns of polymorphic nucleotides in C. elegans natural populations. A strong mutational bias from G/C to A/T nucleotides was detected in the MA lines, implicating oxidative DNA damage as a major endogenous mutagenic force in C. elegans. The observed mutational bias also suggests that the C. elegans nuclear genome cannot be at equilibrium because of mutation alone. Transversions dominate the spectrum of spontaneous mutations observed here, whereas transitions dominate patterns of allegedly neutral polymorphism in natural populations of C. elegans and many other animal species; this observation challenges the assumption that natural patterns of molecular variation in noncoding regions of the nuclear genome accurately reflect underlying mutation processes.high-throughput DNA sequencing ͉ mutation accumulation M utation is the fuel for evolution and the underlying cause of virtually all genetic diseases and cancers. Accurate knowledge of the rate and spectrum of base-substitution mutation is essential to studying and understanding a variety of evolutionary phenomena, including rates of molecular evolution (1), estimating the effective population size from standing levels of neutral genetic variation (2), and evaluating assumptions underlying common tests of selection on DNA sequence (1, 3). Despite the important roles of base-substitution mutations in evolutionary studies and their impact on human health, direct knowledge on genome-wide basesubstitution processes remains scarce. Because mutations occur extremely infrequently, the genomic rate and molecular spectrum of mutation have historically been indirectly inferred from either between-species divergence or standing genetic variation at loci thought to be evolving neutrally, or by extrapolation from estimates at a small handful of loci (4, 5). The former approach relies on the assumption of selective neutrality and might produce misleading results if the putatively neutral loci examined are in fact subject to selection or if the estimated times of divergence are inaccurate. The latt...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.