In this Letter, the authors present a 'landmark-free' clothes recognition approach. Recent studies have shown that the use of landmark information has achieved great success in the task of clothes recognition. However, the landmark annotation is very labour intensive and time consuming. It also suffers from inter-and intra-individual variability. To overcome these problems, the authors propose a two-branch feature selective network for category classification and attribute prediction. Note that, in this Letter, they prove that the proposed network has an excellent ability to effectively learn a discriminative feature representation of a 'clothing image'. Experimental results on the benchmark data set show that the proposed network yields comparable performance to the state-of-the-art methods, which strongly depend on the fashion landmark.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.