We present a theoretical study of a mixture of antidipolar and nondipolar Bose-Einstein condensates confined to an infinite tube. The long-ranged inverted dipolar interactions result in a spin roton instability associated with an unmodulated-to-supersolid phase transition. We present a phase diagram including unmodulated miscible, supersolid, incoherent domain, and macroscopic domain phases. The low densities of the binary mixture do not require beyond-mean-field quantum fluctuation corrections for stabilization. Our survey ranges from the quasi-1D to the radial Thomas-Fermi (elongated 3D) regimes. We also present the dynamic formation of supersolids following a quench from the uniform miscible phase, which maintains phase coherence across the system. Conclusions 12A Derivation of Bogoliubov-de Gennes excitations 12 B Initial state preparation for dynamics 13 References 13
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.