Blowing agents are mainly responsible for the insulation properties of polyurethane rigid foams. Detailed knowledge about the vapor conductivity of blowing agents and their mixtures is essential for their basic understanding. In addition to their insulation properties, blowing agents to a large extent determine the mechanical properties of the foam. Today, blowing agent mixtures are often used in an attempt to combine both worlds, low thermal conductivity and high vapor pressure at low temperatures. Our investigations aim at a better understanding of the relevant practical properties of blowing agents and their mixtures and to focus on their meaning for actual and potential foam systems of interest to the rigid foam insulation market. A newly developed transient hot wire method was used to determine the vapor phase thermal conductivity of various blowing agents used in rigid polyurethane foam. Data for CFC-11, HCFC-141b, HFC-365mfc, HFC-356mffm, HFC-245fa, HFC-245ca, cyclopentane, isopentane, n-pentane, isobutane, n-butane, and carbon dioxide have been generated. In addition to measurements of the pure compounds, current market mixtures of cyclopentane with low boiling hydrocarbons have been investigated. Experiments have been performed at pressures between 0.2 MPa and 1.5 MPa and temperatures between 298 K and 421 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.