Abstract-Depending on their velocity, entry angle and mass, extraterrestrial dust particles suffer certain degrees of heating during entry into Earth's atmosphere, and the mineralogy and chemical composition of these dust particles are significantly changed. In the present study, pulse-heating experiments simulating the atmospheric entry heating of micrometeoroids were carried out in order to understand the mineralogical and chemical changes quantitatively as well as to estimate the peak temperature experienced by the particles during entry heating. Fragments of the CI chondrites Orgueil and Alais as well as pyrrhotites from Orgueil were used as analogue material. The experiments show that the volatile elements S, Zn, Ga, Ge, and Se can be lost from 50 to 100 p m sized CI meteorite fragments at temperatures and heating times applicable to the entry heating of similar sized cosmic dust particles. It is concluded that depletions of these elements relative to CI as observed in micrometeorites are mainly caused by atmospheric entry heating. Besides explaining the element abundances in micrometeorites, the experimentally obtained release patterns can also be used as indicators to estimate the peak heating of dust particles during entry. Using the abundances of Zn and Ge and assuming their original concentrations close to CI, a maximum heating of 1100-1200 "C is obtained for previously analyzed Antarctic micrometeroites. Thermal alteration also strongly influenced the mineralogy of the meteorite fragments. While the unheated samples mainly consisted of phyllosilicates, these phases almost completely transformed into olivine and pyroxene in the fragments heated to 2800 "C. Therefore, dust particles that still contain hydrous minerals were probably never heated to temperatures 2800 "C in the atmosphere. During continued heating, the grain size of the newly formed silicates increased and the composition of the olivines equilibrated. Applying these results quantitatively to Antarctic micrometeorites, typical peak temperatures in the range of 1100-1200 "C during atmospheric entry heating are deduced. This temperature range corresponds to the one obtained from the volatile element concentrations measured in these micrometeorites and points to an asteroidal origin of the particles.
The International Rosetta Mission is set for a rendezvous with Comet 67 P/Churyumov-Gerasimenko in 2014. On its 10 year journey to the comet, the spacecraft will also perform a fly-by of the two asteroids Stein and Lutetia in 2008 and 2010, respectively. The mission goal is to study the origin of comets, the relationship between cometary and interstellar material and its implications with regard to the origin of the Solar System. Measurements will be performed that shed light into the development of cometary activity and the processes in the surface layer of the nucleus and the inner coma. The Micro-Imaging Dust Analysis System (MIDAS) instrument is an essential element of Rosetta's scientific payload. It will provide 3D images and statistical parameters of pristine cometary particles in the nm-μm range from Comet 67P/Churyumov-Gerasimenko. According to cometary dust models and experience gained from the Giotto and Vega missions to 1P/Halley, there appears to be an abundance of particles in this size range, which also covers the building blocks of pristine interplanetary dust particles. The dust collector of MIDAS will point at the comet and collect particles drifting outwards from the nucleus surface. MIDAS is based on an Atomic Force Microscope (AFM), a type of scanning microprobe able to image small structures in 3D. AFM images provide morphological and statistical information on the dust population, including texture, shape, size and flux. Although the AFM uses proven laboratory technology, MIDAS is its first such application in space. This paper describes the scientific objectives and background, the technical implementation and the capabilities of MIDAS as they stand after the commissioning of the flight instrument, and the implications for cometary measurements
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.