The physical properties of tungsten such as the high melting point of 3420°C, the high strength and thermal conductivity, the low thermal expansion and low erosion rate make this material attractive as a plasma facing material. However, the manufacturing of such tungsten parts by mechanical machining such as milling and turning is extremely costly and time intensive because this material is very hard and brittle. Powder Injection Molding (PIM) as special process allows the mass production of components, the joining of different materials without brazing and the creation of composite and prototype materials, and is an ideal tool for scientific investigations. This contribution describes the characterization and analyses of prototype materials produced via PIM. The investigation of the pure tungsten and oxide or carbide doped tungsten materials comprises the microstructure examination, element allocation, texture analyses, and mechanical testing via four-point bend (4-PB). Furthermore, the different materials were characterized by high heat flux (HHF) tests applying transient thermal loads at different base temperatures to address thermal shock and thermal fatigue performance. Additionally, HHF investigations provide information about the thermo-mechanical behavior to extreme steady state thermal loading and measurements of the thermal conductivity as well as oxidation tests were done. Post mortem analyses are performed quantifying and qualifying the occurring damage with respect to reference tungsten grades by metallographic and microscopical means
Intermetallic γ-TiAl based alloys (”γ-alloys”) have a great potential to become important materials for advanced applications in aerospace, automotive and related industries. Research and development on γ-alloys have progressed significantly within the last decade. This research has led to a better understanding of the fundamental correlations between alloy composition and microstructure, processing behaviour and mechanical properties. This paper describes the progress in sheet rolling of γ-TiAl based alloys on industrial scale. Employing an advanced hot-rolling process sheets with lengths >1000 mm have been rolled. Furthermore, first results of foil rolling are presented. The mechanical properties of γ-TiAl sheet material with regard to processing route, alloy composition and microstructure are summarized and discussed. Sheet forming by means of superplastic forming and conventional metal forming techniques has successfully been conducted. Different joining techniques have been studied for γ-alloys including solid-state diffusion bonding. The oxidation resistance of γ-alloys is higher than that of Ti-alloys, however, for long-term applications at temperatures >700°C the need for reliable oxidation protective coatings is anticipated. Recent results of cyclic oxidation tests on coated γ-TiAl sheet are presented. Finally, the results of a stability test conducted on a γ-TiAl panel at 750°C are summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.