A simplified method for the calculation of mammalian cell survival after charged particle irradiation is presented that is based on the track structure model of Scholz and Kraft [1, 2]. Utilizing a modified linear-quadratic relation for the x-ray survival curve, one finds that the model yields linear-quadratic relations also for heavy ion irradiation. If survival is calculated as a function of specific energy, z, in the cell nucleus--thus reducing the stochastic fluctuations of energy deposition--the increase in slope of the survival curve and therefore the coefficient beta z can be estimated with sufficient accuracy from the initial slope, alpha z. This permits the tabulation of the coefficients alpha z for the particle types and energies of interest, and subsequent fast calculations of survival levels at any point in a mixed particle beam. The complexity of the calculations can thereby be reduced in a wide range of applications, which permits the rapid calculations that are required for treatment planning in heavy ion therapy. The validity of the modified computations is assessed by the comparison with explicit calculations in terms of the original model and with experimental results for track-segment conditions. The model is then used to analyze the influence of beam fragmentation on the biological effect of charged particle beams penetrating to different depths in tissue. In addition, cell-survival rates after neuron irradiation are computed from the slowing-down spectra of secondary charged particles and are compared to experimental observations.
Solid tumours often present regions with severe oxygen deprivation (hypoxia), which are resistant to both chemotherapy and radiotherapy. Increased radiosensitivity as a function of the oxygen concentration is well described for X-rays. It has also been demonstrated that radioresistance in anoxia is reduced using high-LET radiation rather than conventional X-rays. However, the dependence of the oxygen enhancement ratio (OER) on radiation quality in the regions of intermediate oxygen concentrations, those normally found in tumours, had never been measured and biophysical models were based on extrapolations. Here we present a complete survival dataset of mammalian cells exposed to different ions in oxygen concentration ranging from normoxia (21%) to anoxia (0%). The data were used to generate a model of the dependence of the OER on oxygen concentration and particle energy. The model was implemented in the ion beam treatment planning system to prescribe uniform cell killing across volumes with heterogeneous radiosensitivity. The adaptive treatment plans have been validated in two different accelerator facilities, using a biological phantom where cells can be irradiated simultaneously at three different oxygen concentrations. We thus realized a hypoxia-adapted treatment plan, which will be used for painting by voxel of hypoxic tumours visualized by functional imaging.
The authors presented a simple simulation model for therapeutical (4)He beams which they introduced in TRiP98, and which is validated experimentally by means of physical and biological dosimetries. Thus, it is now possible to perform detailed treatment planning studies with (4)He beams, either exclusively or in combination with other ion modalities.
To measure the effect of acute oxygen depletion on cell survival for different types of radiation, experiments have been performed using Chinese hamster ovary (CHO) cells and RAT-1 rat prostate cancer cells. A special chamber has been developed to perform irradiations under different levels of oxygenation. The oxygen concentrations used were normoxia (air), hypoxia (94.5% N2, 5% CO2, 0.5% O2) and anoxia (95% N2, 5% CO2). Cells were exposed to X-rays and to C-, N- or O-ions with linear energy transfer (LET) values ranging from 100–160 keV/µm. The oxygen enhancement ratio (OER) and relative biological effectiveness (RBE) values have been calculated from the measured clonogenic survival curves. For both cell lines, the X-ray OER depended on the survival level. For particle irradiation, OER was not dependent on the survival level but decreased with increasing LET. The RBE of CHO cells under oxic conditions reached a plateau for LET values above 100 keV/µm, while it was still increasing under anoxia. In conclusion, the results demonstrated that our chamber could be used to measure radiosensitivity under intermediate hypoxia. Measurements suggest that ions heavier than carbon could be of additional advantage in the irradiation, especially of radioresistant hypoxic tumor regions.
To investigate the influence of chronic hypoxia and anoxia on cell survival after low- and high-LET radiation, CHO-K1 cells were kept for 24 h under chronic hypoxia (94.5% N2; 5% CO2; 0.5% O2) or chronic anoxia (95% N2; 5% CO2). Irradiation was performed using 250 kVp X-rays or carbon ions with a dose average LET of 100 keV/μm either directly under the chronic oxygenation states, or at different time points after reoxygenation. Moreover, the cell cycle distribution for cells irradiated under different chronic oxic states was measured over 24 h during reoxygenation. The measurements showed a fairly uniform cell cycle distribution under chronic hypoxia, similar to normoxic conditions. Chronic anoxia induced a block in G1 and a strong reduction of S-phase cells. A distribution similar to normoxic conditions was reached after 12 h of reoxygenation. CHO cells had a similar survival under both acute and chronic hypoxia. In contrast, survival after irradiation under chronic anoxia was slightly reduced compared to that under acute anoxia. We conclude that, in hamster cells, chronic anoxia is less effective than acute anoxia in inducing radioresistance for both X-rays and carbon ions, whereas in hypoxia, acute and chronic exposures have a similar impact on cell killing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.