Magnetically imploded cylindrical metal shells ( -pinch liners) are attractive drivers for experiments exploring hydrodynamics and properties of materials at extreme conditions. As in all -pinches, the outer surface of a liner is unstable to magneto Rayleigh-Taylor (RT) modes during acceleration, and large-scale distortion arising from RT modes could make such liners unuseable. On the other hand, material strength in the liner should, from first principles, reduce the growth rate of RT modes, and material strength can render some combinations of wavelength and amplitude analytically stable. A series of experiments has been conducted in which high-conductivity, soft, cylindrical aluminum liners were accelerated with 6-MA, 7-s rise-time driving currents. Small perturbations were machined into the outer surface of the liner and perturbation growth monitored. Two-dimensional magneto-hydrodynamic (2-D-MHD) calculations of the growth of the initial perturbations were in good agreement with experimentally observed perturbation growth through the entire course of the implosions. In general, for high-conductivity and soft materials, theory and simulation adequately predicted the behavior of magneto-RT modes in liners where elastic-plastic behavior applies. This is the first direct verification of the growth of magneto-RT in solids with strength known to the authors.
Numerical simulations of experiments in which plasma is formed on an aluminum surface by megagauss magnetic fields provide the first computational demonstration of a magnetic-field threshold that must be reached for aluminum plasma to begin to form. The computed times of plasma initiation agree reasonably well with the observations across the full range of rod diameters, leading to the conclusion that plasma formation is a thermal process. Computationally, plasma forms first in low-density material that is resistive enough to expand across the magnetic field and yet conductive enough that Ohmic heating exceeds expansion cooling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.