<div>Freezing of Gait is the most disabling gait disturbance in Parkinson’s disease. For the past decade, there has been a growing interest in applying machine learning and deep learning models to wearable sensor data to detect Freezing of Gait episodes. In our study, we recruited sixty-seven Parkinson’s disease patients who have been suffering from Freezing of Gait, and conducted two clinical assessments while the patients wore two wireless Inertial Measurement Units on their ankles. We converted the recorded time-series sensor data into continuous wavelet transform scalograms and trained a Convolutional Neural Network to detect the freezing episodes. The proposed model achieved a generalisation accuracy of 89.2% and a geometric mean of 88.8%.</div>
<div>Freezing of Gait is the most disabling gait disturbance in Parkinson’s disease. For the past decade, there has been a growing interest in applying machine learning and deep learning models to wearable sensor data to detect Freezing of Gait episodes. In our study, we recruited sixty-seven Parkinson’s disease patients who have been suffering from Freezing of Gait, and conducted two clinical assessments while the patients wore two wireless Inertial Measurement Units on their ankles. We converted the recorded time-series sensor data into continuous wavelet transform scalograms and trained a Convolutional Neural Network to detect the freezing episodes. The proposed model achieved a generalisation accuracy of 89.2% and a geometric mean of 88.8%.</div>
<div>Freezing of Gait is the most disabling gait disturbance in Parkinson’s disease. For the past decade, there has been a growing interest in applying machine learning and deep learning models to wearable sensor data to detect Freezing of Gait episodes. In our study, we recruited sixty-seven Parkinson’s disease patients who have been suffering from Freezing of Gait, and conducted two clinical assessments while the patients wore two wireless Inertial Measurement Units on their ankles. We converted the recorded time-series sensor data into continuous wavelet transform scalograms and trained a Convolutional Neural Network to detect the freezing episodes. The proposed model achieved a generalisation accuracy of 89.2% and a geometric mean of 88.8%.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.