When a bluff body is placed in a crossflow, the total temperature in its wake can become substantially less than the incoming one, as manifested by the fact that the recovery factor R on its rearmost surface takes negative values at high subsonic flow: this is the phenomenon referred to here as the Eckert-Weise effect. Although a vortex street has been a suspected cause, the issue of whether this is so, and what the mechanism is, has remained unsettled. In this experimental and theoretical investigation, we first examine the cause of the Eckert-Weise effect by enhancing the vortex shedding through acoustic synchronization: resonance between the vortex shedding and transversely standing acoustic waves in a wind tunnel. At the lowest synchronization, where a ringing sound emanates from the wind tunnel, R at the rearmost section of the cylinder is found to become negative even at a Mach number of 0.2; the base pressure (Cpb) takes dips correspondingly, indicative of the intensification of the vortex street. At this lowest acoustic resonance, the decrease of R and Cpb, uniform along the span, agrees with the expectation based on the spanwise uniformity of the lowest standing wave. At the next acoustic resonance where the standing wave now varies along the span, the corresponding dips in R and Cpb, non-uniform along the span, reveals an interesting ‘strip-theory’-like behaviour of the vortex intensities in the vortex street. These results correlating the change in R with Cpb confirm that the Eckert-Weise effect is indeed caused by the vortex shedding, the mechanism of which is examined theoretically in the latter half of the paper.A simple theoretical argument, bolstered by a full numerical simulation, shows that the time-varying static pressure field due to the vortex movement separates the instantaneous total temperature into hot and cold spots located around vortices; once time-averaged, however, the total temperature distribution conceals the presence of hot spots and takes the guise of a colder wake, the Eckert-Weise effect. Therefore the correct explanation of the Eckert-Weise effect, a time-averaged phenomenon, emerges only out of, and only as a superposition of, instantaneous total temperature separation around vortices. Such a separation is not confined to the outside of vortex cores; every vortex in its entirety becomes thermally separated. Nor is it limited to the far downstream equilibrium configuration of the Kármán vortex street but applies to the important near-wake vortices, and to any three-dimensional vortical structure as well. For low subsonic flows in particular, this dynamical explanation also leads to a similar separation of total pressure; these features may thus be potentially exploited as a general marker to identify and quantify vortices.
The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0–300 rpm and the flow rate varied from 7.0–15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.