The effects of ceramics fillers on the polymethylmethacrylate (PMMA)-based solid polymer electrolytes have been studied using ac impedance spectroscopy and infrared spectroscopy. The polymer film samples were prepared using solution cast technique, tetrahydrofuran (THF) used as a solvent, and ethylene carbonate (EC) has been used as plasticizer. Lithium triflate salt (LiCF 3 SO 3 ) has been incorporated into the polymer electrolyte systems. Two types of ceramic fillers, i.e., SiO 2 and Al 2 O 3 , were then implemented into the polymer electrolyte systems. The solutions were stirred for several hours before it is poured into petri dishes for drying under ambient air. After the film has formed, it was transferred into desiccator for further drying before the test. From the observation done by impedance spectroscopy, the room temperature conductivity for the highest conducting film from the (PMMA-ECLiCF 3 SO 3 ) system is 1.36×10 −5 S cm −1 . On addition of the SiO 2 filler and Al 2 O 3 filler, the conductivity are expected to increase in the order of ∼10 −4 S cm −1 . Infrared spectroscopy indicates complexation between the polymer and the plasticizer, the polymer and the salts, the plasticizer and the salts, and the polymer and the fillers. The interactions have been observed in the C=O band, C-O-C band, and the O-CH 3 band.
Tungsten oxide (WO3) is a transition metal oxide with a wide range of applications such as displays, rear-view mirrors, electrochromic (EC) smart windows and gas sensors. Many techniques were adopted for the fabrication of WO3, namely magnetron sputtering, spray pyrolysis and sol-gel synthesis techniques. In this work, WO3films were deposited on indium tin oxide (ITO) coated glasses by sol-gel spin-coating method. The film thickness was varied by depositing different number of layers. The WO3film thickness and optical transmittance were determined using step profilometer and ultraviolet-visible (UV-Vis) spectrophotometer, respectively. WO3film thicknesses increased from 38 nm to 606 nmwith increasing number of deposited layers.The optical transmittance of the WO3films in visible range decreased with increasing film thickness. The optical transmittance were at least 70 % up to 10 deposited layers.WO3is a promising EC material in the application ofEC devices (ECDs).The application of WO3in the EC devices will be discussed.
Nowadays, mobile communication is growing rapidly and become an everyday commodity. The vast deployment of real-time services in Long Term Evolution (LTE) network demands for the scheduling techniques that support the Quality of Service (QoS) requirements. LTE is designed and implemented to fulfill the users’ QoS. However, 3GPP does not define the specific scheduling technique for resource distribution which leads to vast research and development of the scheduling techniques. In this context, a review of the recent scheduling algorithm is reported in the literature. These schedulers in the literature cause high Packet Loss Rate (PLR), low fairness, and high delay. To cope with these disadvantages, we propose an enhanced EXPRULE (eEXPRULE) scheduler to improve the radio resource utilization in the LTE network. Extensive simulation works are carried out and the proposed scheduler provides a significant performance improvement for video application without sacrificing the VoIP performance. The eEXPRULE scheduler increases video throughput, spectrum efficiency, and fairness by 50%, 13%, and 11%, respectively, and reduces the video PLR by 11%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.