We report a novel optoacoustic detection scheme which is suited for use with low-power radiation sources. The improved detection capability is demonstrated for SO2 with a frequency-doubled dye laser of 1 mW uv output power, allowing the detection of SO2 concentrations as low as 0.12 ppb.
Tropospheric temperature profiles have been measured at daytime with a rotational Raman lidar. The lidar operates in the solar-blind spectral region with KrF laser radiation that is Raman shifted in hydrogen to 276.787 nm. This wavelength corresponds to the resonance absorption of a thallium atomic-vapor f ilter that is used to suppress the large elastic-backscatter signal. The rotational Raman signal is analyzed with an echelle grating spectrometer that separates spectral regions with different temperature sensitivities in both the Stokes and the anti-Stokes Raman spectra. Simultaneously, profiles of water vapor and ozone can be determined by means of vibrational Raman backscattering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.