The effects of soil flooding on gas exchange and photosystem 2 (PS2) activity were analyzed in leaves of Phragmites australis, Carex cinerascens, and Hemarthria altissima. Pronounced decrease in net photosynthetic rate and stomatal conductance with flooding was found only in C. cinerascens. No significant changes in PS2 activity were observed in all three species which suggests that the photosynthetic apparatus was not damaged. Among the three species, H. altissima is better adapted to flooding than P. australis and C. cinerascens.
Electrochemical impedance spectroscopy (EIS) was employed to investigate the corrosion performance of nanoparticulate SiO 2 modified epoxy coatings on carbon steel in 3.5 wt% NaCl solution, coupled with salt spray test. Capacitancegravimetric methods and delamination tests were performed to analyze the water uptake behavior and interface stability against delamination of modified coatings, respectively. Four systems were studied, including a clear coating and three pigmented coatings (with 1, 2, and 3 wt% nanoparticulate SiO 2 ). The experimental results showed that nanoparticulate SiO 2 particles can improve the anti-corrosion performance of the coatings and the optimal addition content is 2 wt%. The results obtained with capacitance-gravimetric measurements showed that the diffusion process of water through epoxy coatings with different pigment volume concentration (PVC) obeyed the second Fick's diffusion law in the initial period. Adding nanoparticulate SiO 2 into epoxy coatings can act effectively. The positive influence is attributed to the reaction between nanoparticles and epoxy resin which is confirmed by FTIR, improving the barrier and dispersion effectiveness of coatings. The negative one is increasing the number of pores in the coatings when the adding amount is beyond the critical PVC.
Range expansions and gene flow as micro‐evolutionary processes played a leading role in the population demographic history of marine organisms. Herein, we sequenced partial mtDNA Cox1 gene from 26 assigned geographical populations to understand how Irish moss (Chondrus crispus) responded to severe climatic oscillations during the Pleistocene glaciations and contemporary forces such as gene flow. Phylogeographic patterns indicated that haplotype frequency distributions were strongly skewed, with nearly half found only in single samples and thus restricted to a single population. Analysis of molecular variance revealed that most of the variation was within populations with no significant genetic structuring on either side of the Atlantic. Demographic analyses indicated that ISI (Irish Sea and Ireland) and NS (the North Sea) areas experienced a slight trend of increase in population size over time, whereas EC (the English Channel) area experienced expansion beginning approximately 170 000–360 000 BP. The observed complex genetic pattern of C. crispus is consistent with a scenario of multiple unrelated founding events by survival of this species in at least three putative Pleistocene refugia along the European coastline, and subsequent trans‐Atlantic dispersal combined with contiguous northward population expansion predating the LGM and geographically gene flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.