Background: Intrapapillary capillary loops (IPCLs) represent an endoscopically visible feature of early squamous cell neoplasia (ESCN) which correlate with invasion depth-an important factor in the success of curative endoscopic therapy. IPCLs visualised on magnification endoscopy with Narrow Band Imaging (ME-NBI) can be used to train convolutional neural networks (CNNs) to detect the presence and classify staging of ESCN lesions. Methods: A total of 7046 sequential high-definition ME-NBI images from 17 patients (10 ESCN, 7 normal) were used to train a CNN. IPCL patterns were classified by three expert endoscopists according to the Japanese Endoscopic Society classification. Normal IPCLs were defined as type A, abnormal as B1-3. Matched histology was obtained for all imaged areas. Results: This CNN differentiates abnormal from normal IPCL patterns with 93.7% accuracy (86.2% to 98.3%) and sensitivity and specificity for classifying abnormal IPCL patterns of 89.3% (78.1% to 100%) and 98% (92% to 99.7%), respectively. Our CNN operates in real time with diagnostic prediction times between 26.17 ms and 37.48 ms. Conclusion: Our novel and proof-of-concept application of computer-aided endoscopic diagnosis shows that a CNN can accurately classify IPCL patterns as normal or abnormal. This system could be used as an in vivo, real-time clinical decision support tool for endoscopists assessing and directing local therapy of ESCN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.