This study focuses on the standardization of techniques across laboratories to enable multiple datasets to be compared and combined in order to obtain reliable and robust wide-scale patterns of diversity. A set of protocols using a core collection of simple sequence repeat (SSR) markers, reference lines and standard alleles, plus a common system of allele nomenclature, was adopted in the study of maize genetic diversity in a network of laboratories in Asia. Pair-wise allele comparisons of the reference lines, done to assess the general agreement between datasets from four laboratories, showed error rates (raw) ranging from 5.8% to 9.7%, which were reduced to less than 8% after adjustments of correctable errors, and further reduced to less than 6% after the exclusion of all markers with greater than 10% individual error rates. Overall, 45% of the total mismatches were due to frameshift errors, 39% to wrong allele size, 15% to failed amplification and 1% to "extra" alleles. Higher genetic similarity values of the reference lines were achieved using fewer markers with data of higher quality rather than with more markers of questionable quality. Cluster analysis of the merged datasets showed the lines from southern China to be highly diverse, falling into six of the seven clusters observed and all well represented by tester lines. The lines from Indonesia fell into five of six groups, with two main groups represented by tester lines. The CIMMYT lines developed for the Asian region showed a relatively narrow genetic base, falling in two out of seven and in three out of six clusters in China and Indonesia, respectively. In contrast to the case in southern China where 95% of the lines clustered separately from the CIMMYT lines, lines in the Indonesian breeding program show a closer relationship with the CIMMYT lines, reflecting a long history of germplasm exchange.
Cia27 on rat chromosome 10 is a collagen-induced arthritis (CIA) severity quantitative trait locus originally identified in a study of (DA Â ACI) F2. As an initial step towards the positional cloning of the Cia27 gene, a 17 cM (21 Mb) interval from the DA strain (arthritis-susceptible) containing the two-logarithm of odds support interval comprising Cia27 was introgressed into the ACI (arthritis-resistant) background through genotype-guided congenic breeding. ACI.DA(Cia27) congenics developed a significantly more severe form of arthritis (CIA), with a 5.9-fold increase in median arthritis severity index, a parameter known to correlate with synovial inflammation, and cartilage and bone erosions, compared with ACI (Pp0.001). The arthritis severity enhancing effect could be detected from day 21 onwards. Rats heterozygous at the congenic interval developed a disease similar to ACI rats, suggesting that DA alleles operate in a recessive manner. Levels of autoantibodies anti-rat type II collagen did not correlate with arthritis severity. Synovial tissue mRNA levels of interleukin-1b (IL-1b) were significantly increased in ACI.DA(Cia27) congenics compared with ACI. These results demonstrate that Cia27 harbors a novel arthritis severity regulatory gene. The identification of this gene should facilitate the identification of the rheumatoid arthritis gene mapped to the human syntenic region on chromosome 17q22-q25.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.